您当前的位置: 首页 > 

暂无认证

  • 0浏览

    0关注

    95314博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

SLAM领域牛人、牛实验室、牛研究成果梳理

发布时间:2020-08-29 23:59:39 ,浏览量:0

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

对于很多小伙伴来说,初入一个领域时最应该了解的当然是这个领域的研究现状啦。只有知道这个领域大家现在正在干什么,才能知道自己应该做什么。关注领域内的大牛以及领域内比较著名的实验室,紧跟大牛的脚步,才能走在科研的最前沿。今天CV_life君就帮各位整理了一些现阶段国内外SLAM的著名实验室,大牛以及研究成果,还会附带大牛们的代表性论文,开源代码,以及常用的数据集网址,如果喜欢的话记得分享给朋友哦~

话不多说,上干货!

SLAM领域的大牛

1. Andrew Davison

个人主页:

http://www.doc.ic.ac.uk/~ajd/index.html.

现任英国帝国理工学院教授,机器视觉组及Dyson机器人实验室主任,英国牛津大学博士,单目摄像头SLAM奠基人(MonoSLAM),近年来在视觉slam领域做了大量研究,著名工作包括MonoSLAM, SLAM++, DTAM等。

代表论文:

Real-Time Simultaneous Localisation and Mapping with a Single Camera(ICCV 2013)

下载链接:

http://www.doc.ic.ac.uk/~ajd/Publications/davison_iccv2003.pdf

源代码:

https://github.com/hanmekim/SceneLib2/tree/upgrade

2.  David Murray

个人主页:

http://www.robots.ox.ac.uk/~dwm/.

SLAM视觉宗师,现任英国牛津大学教授,Active Vision Laboratory主任,从1980年至2018年,发表了大量高水平的SLAM论文,也是PTAM作者,Philip Torr, Andrew Davison,Ian Reid的Phd导师。

代表性论文:

Parallel Tracking and Mapping for Small AR Workspaces

下载链接:

http://www.robots.ox.ac.uk/~dwm/Publications/klein_murray_ismar2007/klein_murray_ismar2007.pdf

源代码:

http://www.robots.ox.ac.uk/~gk/PTAM/

3.  Jakob Engel

个人主页:

https://jakobengel.github.io/#Home

慕尼黑工业大学博士,现任西雅图Oculus Research的研究负责人。年轻有为,是LSD-SLAM和DSO-SLAM的作者,也从事视觉惯导里程计的研究。

代表论文:

Large-Scale Direct Monocular SLAM(IROS 2015)

Direct Sparse Odometry (2017)

下载链接:

https://jakobengel.github.io/pdf/engel14eccv.pdf(LSD-SLAM)

https://jakobengel.github.io/pdf/DSO.pdf(DSO-SLAM)

源代码:

https://github.com/tum-vision/lsd_slam(LSD-SLAM)

https://github.com/JakobEngel/dso(DSO-SLAM)

4. RaúlMurArtal

个人主页:

http://webdiis.unizar.es/~raulmur/

西班牙人,现任Facebook Reality Labs的研究科学家,大名鼎鼎的ORB-SLAM的作者。

代表论文:

ORB-SLAM: A Versatile and Accurate Monocular SLAM System(2015)

下载链接:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7219438

源代码:

https://github.com/raulmur/ORB_SLAM2

5. Christian Kerl

个人主页:

https://vision.in.tum.de/members/kerl

慕尼黑技术大学博士生,DVO的作者,主要研究方向为:使用安装在四旋翼或手持设备上的RGB-D摄像机进行视觉SLAM和3D重建。

代表论文:

Dense Visual SLAM for RGB-D Cameras(IROS 2013)

下载链接:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.402.5544&rep=rep1&type=pdf

源代码:

https://github.com/tum-vision/dvo_slam

6.  Felix Endres

个人主页:

http://www2.informatik.uni-freiburg.de/~endres/

Albert-Ludwigs-Universität Freiburg的自主智能系统小组的博士生,RGBD-SLAM_V2的作者。主要研究方向为3D感知,主要运用RGB-D SLAM方法。

代表论文:

3D Mapping with an RGB-D Camera(IEEE Transactions on Robotics, 2014)

下载链接:

http://www2.informatik.uni-freiburg.de/~endres/files/publications/endres13tro.pdf

SLAM领域著名实验室

好啦~介绍完几个比较经典的算法以及他们的作者,小编还要给大家推荐几个SLAM的主要研究实验室:

1.  苏黎世联邦理工学院的Autonomous System Lab,该实验室主要方向是创建机器人和智能系统,使其能在复杂环境下自主运行。他们还在tango项目上与谷歌合作,负责视觉惯导的里程计,基于视觉的定位和深度重建算法。

网址:http://www.asl.ethz.ch/

2.明尼苏达大学的Multiple Autonomous Robotic Systems Laboratory(MARS),其主要研究方向包括:视觉/激光辅助惯性导航系统、手机和可穿戴计算机上的大规模3D定位和映射、多机器人/传感器定位,映射和导航、可重构传感器网络的主动传感、最佳信息选择和融合、移动操作、人机合作等。

网址:http://mars.cs.umn.edu/

3. 慕尼黑工业大学的The Computer Vision Group,主要研究基于图像的3-D重建,光流估计,机器人视觉,视觉SLAM等。

网址:https://vision.in.tum.de/research

4. 香港科技大学的Aerial Robotics Group,主要研究基于无人机的视觉惯导紧耦合算法。代表作品:VINS-Mono,一个单目视觉惯导系统的实时SLAM框架,其代码已经开源在

https://github.com/HKUST-Aerial-Robotics/VINS-Mono

上。做视觉惯导融合的小伙伴们一定不要错过~

网址:http://uav.ust.hk/

5.  浙江大学的CAD&CG国家重点实验室。该实验室在SLAM、AR、三维重建等领域有较大的贡献。其中章国锋教授课题组主攻方向就是视觉SLAM以及三维重构。下面送上章国峰教授的个人主页

http://www.cad.zju.edu.cn/home/gfzhang/

大家可以在这里找到章国峰教授的研究成果。

网址:

http://www.cad.zju.edu.cn/zhongwen.html

6. 武汉大学的Computer Vision & Remote Sensing Lab,主要方向为计算机视觉,遥感成像。其中的成员博士后吴萌,其主要方向为组合导航、基于SLAM的室内机器人导航系统研发等。附上他的个人主页:

http://cvrs.whu.edu.cn/index.php?m=content&c=index&a=show&catid=17&id=48

网址:http://cvrs.whu.edu.cn

这几个实验室发表了很多SLAM领域的优秀论文,如果小伙伴们对他们的某一个方向感兴趣的话,直接戳进他们的官网,了解他们的项目,阅读他们的论文,我相信你会发现一个精彩的SLAM世界。

SLAM常用数据集

要做好slam,优秀的数据集自然不可或缺的,接下来小编还要为大家介绍几个slam方面常用的数据集:

1.KITTI 装备4个相机、高精度GPS/IMU和激光雷达,在城市道路采集的数据。

网址:

http://www.cvlibs.net/datasets/kitti/

2.EuRoC MAV 提供了在微型飞行器(MAV)上收集的视觉惯性数据集。数据集包含立体图像,同步IMU测量以及精确的运动和真值。

网址:

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

3. RGB-D SLAM Dataset and Benchmark 提供包含RGB-D数据和地面实况数据的大型数据集。

网址:

https://vision.in.tum.de/data/datasets/rgbd-dataset

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

关注
打赏
1655516835
查看更多评论
立即登录/注册

微信扫码登录

1.2973s