您当前的位置: 首页 >  嵌入式

张巧龙

暂无认证

  • 0浏览

    0关注

    1208博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

干货:嵌入式C语言源代码优化方案(非编译器优化)

张巧龙 发布时间:2020-09-25 12:31:22 ,浏览量:0

点击上方“大鱼机器人”,选择“置顶/星标公众号”

福利干货,第一时间送达!

1、选择合适的算法和数据结构

选择一种合适的数据结构很重要,如果在一堆随机存放的数中使用了大量的插入和删除指令,那使用链表要快得多。数组与指针语句具有十分密切的关系,一般来说,指针比较灵活简洁,而数组则比较直观,容易理解。对于大部分的编译器,使用指针比使用数组生成的代码更短,执行效率更高。

在许多种情况下,可以用指针运算代替数组索引,这样做常常能产生又快又短的代码。与数组索引相比,指针一般能使代码速度更快,占用空间更少。使用多维数组时差异更明显。下面的代码作用是相同的,但是效率不一样。

数组索引                指针运算

    For(;;){               p=array

    A=array[t++];          for(;;){

                                a=*(p++);

    。。。。。。。。。。。。。。。

    }                      }

指针方法的优点是,array的地址每次装入地址p后,在每次循环中只需对p增量操作。在数组索引方法中,每次循环中都必须根据t值求数组下标的复杂运算。

2、使用尽量小的数据类型

能够使用字符型(char)定义的变量,就不要使用整型(int)变量来定义;能够使用整型变量定义的变量就不要用长整型(long int),能不使用浮点型(float)变量就不要使用浮点型变量。当然,在定义变量后不要超过变量的作用范围,如果超过变量的范围赋值,C编译器并不报错,但程序运行结果却错了,而且这样的错误很难发现。

在ICCAVR中,可以在Options中设定使用printf参数,尽量使用基本型参数(%c、%d、%x、%X、%u和%s格式说明符),少用长整型参数(%ld、%lu、%lx和%lX格式说明符),至于浮点型的参数(%f)则尽量不要使用,其它C编译器也一样。在其它条件不变的情况下,使用%f参数,会使生成的代码的数量增加很多,执行速度降低。

3、减少运算的强度 (1)、查表(游戏程序员必修课)

一个聪明的游戏大虾,基本上不会在自己的主循环里搞什么运算工作,绝对是先计算好了,再到循环里查表。看下面的例子:

旧代码:

long factorial(int i)
{
    if (i == 0)
      return 1;
    else
      return i * factorial(i - 1);
}

新代码:

static long factorial_table[] = {1, 1, 2, 6, 24, 120, 720  /* etc */ };
long factorial(int i)
{
    return factorial_table[i];
}

如果表很大,不好写,就写一个init函数,在循环外临时生成表格。

(2)求余运算
a=a%8;

可以改为:

a=a&7;

说明:位操作只需一个指令周期即可完成,而大部分的C编译器的“%”运算均是调用子程序来完成,代码长、执行速度慢。通常,只要求是求2n方的余数,均可使用位操作的方法来代替。

(3)平方运算
a=pow(a, 2.0);

可以改为:

a=a*a;

说明:在有内置硬件乘法器的单片机中(如51系列),乘法运算比求平方运算快得多,因为浮点数的求平方是通过调用子程序来实现的,在自带硬件乘法器的AVR单片机中,如ATMega163中,乘法运算只需2个时钟周期就可以完成。既使是在没有内置硬件乘法器的AVR单片机中,乘法运算的子程序比平方运算的子程序代码短,执行速度快。

如果是求3次方,如:

a=pow(a,3.0);

更改为:

a=a*a*a;

则效率的改善更明显。

(4)用移位实现乘除法运算
a=a*4;
b=b/4;

可以改为:

a=a2;

通常如果需要乘以或除以2n,都可以用移位的方法代替。在ICCAVR中,如果乘以2n,都可以生成左移的代码,而乘以其它的整数或除以任何数,均调用乘除法子程序。用移位的方法得到代码比调用乘除法子程序生成的代码效率高。实际上,只要是乘以或除以一个整数,均可以用移位的方法得到结果,如:

a=a*9

可以改为:

a=(a> 1;
    }
  }
  *r = a - *q * *q;
}

推荐的代码:

// 假设 q != r

void isqrt(unsigned long a, unsigned long* q, unsigned long* r)
{
  unsigned long qq, rr;
  qq = a;
  if (a > 0)
  {
    while (qq > (rr = a / qq))
    {
      qq = (qq + rr) >> 1;
    }
  }
  rr = a - qq * qq;
  *q = qq;
  *r = rr;
}

5、循环优化 (1)充分分解小的循环

要充分利用CPU的指令缓存,就要充分分解小的循环。特别是当循环体本身很小的时候,分解循环可以提高性能。注意:很多编译器并不能自动分解循环。不好的代码:

// 3D转化:把矢量 V 和 4x4 矩阵 M 相乘
for (i = 0;i < 4;i ++)
{
  r[i] = 0;
  for (j = 0;j < 4;j ++)
  {
    r[i] += M[j][i]*V[j];
  }
}

推荐的代码:

r[0] = M[0][0]*V[0] + M[1][0]*V[1] + M[2][0]*V[2] + M[3][0]*V[3];
r[1] = M[0][1]*V[0] + M[1][1]*V[1] + M[2][1]*V[2] + M[3][1]*V[3];
r[2] = M[0][2]*V[0] + M[1][2]*V[1] + M[2][2]*V[2] + M[3][2]*V[3];
r[3] = M[0][3]*V[0] + M[1][3]*V[1] + M[2][3]*V[2] + M[3][3]*v[3];

(2)提取公共部分

对于一些不需要循环变量参加运算的任务可以把它们放到循环外面,这里的任务包括表达式、函数的调用、指针运算、数组访问等,应该将没有必要执行多次的操作全部集合在一起,放到一个init的初始化程序中进行。

(3)延时函数

通常使用的延时函数均采用自加的形式:

void delay (void)
{
  unsigned int i;
  for (i=0;i0;i--) ;
}

两个函数的延时效果相似,但几乎所有的C编译对后一种函数生成的代码均比前一种代码少1~3个字节,因为几乎所有的MCU均有为0转移的指令,采用后一种方式能够生成这类指令。在使用while循环时也一样,使用自减指令控制循环会比使用自加指令控制循环生成的代码更少1~3个字母。但是在循环中有通过循环变量“i”读写数组的指令时,使用预减循环有可能使数组超界,要引起注意。

(4)while循环和do…while循环

用while循环时有以下两种循环形式:

unsigned int i;
i=0;
while (i0);

在这两种循环中,使用do…while循环编译后生成的代码的长度短于while循环。

(5)循环展开

这是经典的速度优化,但许多编译程序(如gcc -funroll-loops)能自动完成这个事,所以现在你自己来优化这个显得效果不明显。

旧代码:

for (i = 0; i < 100; i++)
{
  do_stuff(i);
}

新代码:

for (i = 0; i < 100; )
{
  do_stuff(i); i++;
  do_stuff(i); i++;
  do_stuff(i); i++;
  do_stuff(i); i++;
  do_stuff(i); i++;
  do_stuff(i); i++;
  do_stuff(i); i++;
  do_stuff(i); i++;
  do_stuff(i); i++;
  do_stuff(i); i++;
}

可以看出,新代码里比较指令由100次降低为10次,循环时间节约了90%。不过注意:对于中间变量或结果被更改的循环,编译程序往往拒绝展开,(怕担责任呗),这时候就需要你自己来做展开工作了。

还有一点请注意,在有内部指令cache的CPU上(如MMX芯片),因为循环展开的代码很大,往往cache溢出,这时展开的代码会频繁地在CPU 的cache和内存之间调来调去,又因为cache速度很高,所以此时循环展开反而会变慢。还有就是循环展开会影响矢量运算优化。

(6)循环嵌套

把相关循环放到一个循环里,也会加快速度。

旧代码:

for (i = 0; i < MAX; i++)         /* initialize 2d array to 0's */
    for (j = 0; j < MAX; j++)
        a[i][j] = 0.0;
    for (i = 0; i < MAX; i++)        /* put 1's along the diagonal */
        a[i][i] = 1.0;

新代码:

for (i = 0; i < MAX; i++)         /* initialize 2d array to 0's */
{
    for (j = 0; j < MAX; j++)
        a[i][j] = 0.0;
    a[i][i] = 1.0;                            /* put 1's along the diagonal */
}

(7)Switch语句中根据发生频率来进行case排序

Switch 可能转化成多种不同算法的代码。其中最常见的是跳转表和比较链/树。当switch用比较链的方式转化时,编译器会产生if-else-if的嵌套代码,并按照顺序进行比较,匹配时就跳转到满足条件的语句执行。所以可以对case的值依照发生的可能性进行排序,把最有可能的放在第一位,这样可以提高性能。此外,在case中推荐使用小的连续的整数,因为在这种情况下,所有的编译器都可以把switch 转化成跳转表。

不好的代码:

int days_in_month, short_months, normal_months, long_months;

。。。。。。

switch (days_in_month)
{
  case 28:
  case 29:
    short_months ++;
    break;
  case 30:
    normal_months ++;
    break;
  case 31:
    long_months ++;
    break;
  default:
    cout b->c[4]->cheetah + a->b->c[4]->dog;

新代码:

struct animals * temp = a->b->c[4];
total = temp->aardvark + temp->baboon + temp->cheetah + temp->dog;

一些老的C语言编译器不做聚合优化,而符合ANSI规范的新的编译器可以自动完成这个优化,看例子:

float a, b, c, d, f, g;
。。。
a = b / c * d;
f = b * g / c;

这种写法当然要得,但是没有优化

float a, b, c, d, f, g;
。。。
a = b / c * d;
f = b / c * g;

如果这么写的话,一个符合ANSI规范的新的编译器可以只计算b/c一次,然后将结果代入第二个式子,节约了一次除法运算。

8、函数优化 (1)Inline函数

在C++中,关键字Inline可以被加入到任何函数的声明中。这个关键字请求编译器用函数内部的代码替换所有对于指出的函数的调用。这样做在两个方面快于函数调用:第一,省去了调用指令需要的执行时间;第二,省去了传递变元和传递过程需要的时间。但是使用这种方法在优化程序速度的同时,程序长度变大了,因此需要更多的ROM。使用这种优化在Inline函数频繁调用并且只包含几行代码的时候是最有效的。

(2)不定义不使用的返回值

函数定义并不知道函数返回值是否被使用,假如返回值从来不会被用到,应该使用void来明确声明函数不返回任何值。

(3)减少函数调用参数

使用全局变量比函数传递参数更加有效率。这样做去除了函数调用参数入栈和函数完成后参数出栈所需要的时间。然而决定使用全局变量会影响程序的模块化和重入,故要慎重使用。

(4)所有函数都应该有原型定义

一般来说,所有函数都应该有原型定义。原型定义可以传达给编译器更多的可能用于优化的信息。

(5)尽可能使用常量(const)

尽可能使用常量(const)。C++ 标准规定,如果一个const声明的对象的地址不被获取,允许编译器不对它分配储存空间。这样可以使代码更有效率,而且可以生成更好的代码。

(6)把本地函数声明为静态的(static)

如果一个函数只在实现它的文件中被使用,把它声明为静态的(static)以强制使用内部连接。否则,默认的情况下会把函数定义为外部连接。这样可能会影响某些编译器的优化——比如,自动内联。

9、采用递归

与LISP之类的语言不同,C语言一开始就病态地喜欢用重复代码循环,许多C程序员都是除非算法要求,坚决不用递归。事实上,C编译器们对优化递归调用一点都不反感,相反,它们还很喜欢干这件事。只有在递归函数需要传递大量参数,可能造成瓶颈的时候,才应该使用循环代码,其他时候,还是用递归好些。

10、变量 (1)register变量

在声明局部变量的时候可以使用register关键字。这就使得编译器把变量放入一个多用途的寄存器中,而不是在堆栈中,合理使用这种方法可以提高执行速度。函数调用越是频繁,越是可能提高代码的速度。

在最内层循环避免使用全局变量和静态变量,除非你能确定它在循环周期中不会动态变化,大多数编译器优化变量都只有一个办法,就是将他们置成寄存器变量,而对于动态变量,它们干脆放弃对整个表达式的优化。尽量避免把一个变量地址传递给另一个函数,虽然这个还很常用。C语言的编译器们总是先假定每一个函数的变量都是内部变量,这是由它的机制决定的,在这种情况下,它们的优化完成得最好。但是,一旦一个变量有可能被别的函数改变,这帮兄弟就再也不敢把变量放到寄存器里了,严重影响速度。看例子:

a = b();
c(&d);

因为d的地址被c函数使用,有可能被改变,编译器不敢把它长时间的放在寄存器里,一旦运行到c(&d),编译器就把它放回内存,如果在循环里,会造成N次频繁的在内存和寄存器之间读写d的动作,众所周知,CPU在系统总线上的读写速度慢得很。比如你的赛杨300,CPU主频300,总线速度最多66M,为了一个总线读,CPU可能要等4-5个周期,得。。得。。得。。想起来都打颤。

(2)同时声明多个变量优于单独声明变量 (3)短变量名优于长变量名,应尽量使变量名短一点 (4)在循环开始前声明变量 11、使用嵌套的if结构

在if结构中如果要判断的并列条件较多,最好将它们拆分成多个if结构,然后嵌套在一起,这样可以避免无谓的判断。

说明:

上面的优化方案由王全明收集整理。很多资料来源于网上,出处不祥,在此对所有作者一并致谢!

该方案主要是考虑到在嵌入式开发中对程序执行速度的要求特别高,所以该方案主要是为了优化程序的执行速度。

注意:优化是有侧重点的,优化是一门平衡的艺术,它往往要以牺牲程序的可读性或者增加代码长度为代价。

-END-

| 整理文章为传播相关技术,版权归原作者所有 |

| 如有侵权,请联系删除 |

往期好文合集

华为手机芯片还能撑多久? 官方回应来了

太牛了!芯片级拆解世界第一颗FPGA芯片!

我的编程能力从什么时候开始突飞猛进

  最 后  

 

若觉得文章不错,转发分享,也是我们继续更新的动力。

5T资源大放送!包括但不限于:C/C++,Linux,Python,Java,PHP,人工智能,PCB、FPGA、DSP、labview、单片机、等等!

在公众号内回复「更多资源」,即可免费获取,期待你的关注~

关注
打赏
1665727216
查看更多评论
立即登录/注册

微信扫码登录

0.1770s