点击上方“3D视觉工坊”,选择“星标”
干货第一时间送达
前一段时间,ECCV2020公布了最佳论文提名奖,卡耐基梅隆大学以《Towards Streaming Perception》荣获该奖项.他们开发了一种新的衡量自动驾驶汽车对不断变化的交通状况的反应能力的标准,这使比较感知系统的准确性和反应时间首次成为可能.
论文链接:
https://arxiv.org/abs/2005.10420
代码链接:
https://github.com/mtli/sAP
1 背景
自动驾驶以及虚拟现实等应用都需要低延迟的算法来支撑,为了保证安全和提供给用户足够的视觉沉浸感,算法的延迟标准应该和人类对场景改变的反应时间保持一致,通常是200毫秒。近来的计算机视觉算法也开始考虑延迟(Latency)对算法性能的影响,但也仅仅是在离线环境下考虑如何提高算法的准确率(Accuracy),并在二者之间寻找一个平衡点。
以这种评估方法优化得到的算法还无法应用在实时在线的感知场景中,因为当算法完成对某一帧图像的处理时,比如200ms后,周围的环境就已经发生了变化。如下面的视频所示,算法在得到第一帧中车辆的分割结果后,车辆就已经运动到另一个位置了,那此时所得到的分割结果的意义就很小了。
本文提出了一种方法可以将延迟和准确率结合起来应用在实时的算法评估中,作者称之为“流准确率”,并在此度量的基础上,提出了流感知的元基准,可以将任何单帧任务转换为流感知任务。
2 实验效果
Single GPU vs Infinite GPUs
Instance Segmentation
Forecasting
Detectors Only
3 数据对比
作者选择了Argoverse1.1数据集,作者重点选择其中的RGB图像数据,对其做了额外的密集标注构成了Argoverse-HD(High-frame-rate-Detection),新数据集中每个场景的视频的帧率为30FPS,同时标注密度与该帧率保持一致.
本文仅做学术分享,如有侵权,请联系删文。
下载1
在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。
下载2
在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。
下载3
在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群。
一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、可答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~