深入学习java源码之Double.parseDouble()与Double.valueOf()
Double类是原始类型double的包装类,它包含若干有效处理double值的方法,如将其转换为字符串表示形式,反之亦然。Double类的对象可以包含一个double值。
public class Double_test
{
public static void main(String[] args)
{
double b = 55.05;
String bb = "45";
// Construct two Double objects
Double x = new Double(b);
Double y = new Double(bb);
// toString()
System.out.println("toString(b) = " + Double.toString(b));
// valueOf()
// return Double object
Double z = Double.valueOf(b);
System.out.println("valueOf(b) = " + z);
z = Double.valueOf(bb);
System.out.println("ValueOf(bb) = " + z);
// parseDouble()
// return primitive double value
double zz = Double.parseDouble(bb);
System.out.println("parseDouble(bb) = " + zz);
System.out.println("bytevalue(x) = " + x.byteValue());
System.out.println("shortvalue(x) = " + x.shortValue());
System.out.println("intvalue(x) = " + x.intValue());
System.out.println("longvalue(x) = " + x.longValue());
System.out.println("doublevalue(x) = " + x.doubleValue());
System.out.println("floatvalue(x) = " + x.floatValue());
int hash = x.hashCode();
System.out.println("hashcode(x) = " + hash);
boolean eq = x.equals(y);
System.out.println("x.equals(y) = " + eq);
int e = Double.compare(x, y);
System.out.println("compare(x,y) = " + e);
int f = x.compareTo(y);
System.out.println("x.compareTo(y) = " + f);
Double d = Double.valueOf("1010.54789654123654");
System.out.println("isNaN(d) = " + d.isNaN());
System.out.println("Double.isNaN(45.12452) = " + Double.isNaN(45.12452));
// Double.POSITIVE_INFINITY stores
// the positive infinite value
d = Double.valueOf(Double.POSITIVE_INFINITY + 1);
System.out.println("Double.isInfinite(d) = " +
Double.isInfinite(d.doubleValue()));
double dd = 10245.21452;
System.out.println("Double.toString(dd) = " + Double.toHexString(dd));
long double_to_long = Double.doubleToLongBits(dd);
System.out.println("Double.doubleToLongBits(dd) = " + double_to_long);
double long_to_double = Double.longBitsToDouble(double_to_long);
System.out.println("Double.LongBitsToDouble(double_to_long) = " +
long_to_double);
}
}
输出:
toString(b) = 55.05
valueOf(b) = 55.05
ValueOf(bb) = 45.0
parseDouble(bb) = 45.0
bytevalue(x) = 55
shortvalue(x) = 55
intvalue(x) = 55
longvalue(x) = 55
doublevalue(x) = 55.05
floatvalue(x) = 55.05
hashcode(x) = 640540672
x.equals(y) = false
compare(x,y) = 1
x.compareTo(y) = 1
isNaN(d) = false
Double.isNaN(45.12452) = false
Double.isInfinite(d) = true
Double.toString(dd) = 0x1.4029b7564302bp13
Double.doubleToLongBits(dd) = 4666857980575363115
Double.LongBitsToDouble(double_to_long) = 10245.21452
Double类型的计算
如果我们编译运行下面这个程序会看到什么?
public class Test{
public static void main(String args[]){
System.out.println(0.05+0.01);
System.out.println(1.0-0.42);
System.out.println(4.015*100);
System.out.println(123.3/100);
}
};
你没有看错!结果确实是
0.060000000000000005
0.5800000000000001
401.49999999999994
1.2329999999999999
Java中的简单浮点数类型float和double不能够进行运算。不光是Java,在其它很多编程语言中也有这样的问题。在大多数情况下,计算的结果是准确的,但是多试几次(可以做一个循环)就可以试出类似上面的错误。现在终于理解为什么要有BCD码了。 这个问题相当严重,如果你有9.999999999999元,你的计算机是不会认为你可以购买10元的商品的。 在有的编程语言中提供了专门的货币类型来处理这种情况,但是Java没有。现在让我们看看如何解决这个问题。 四舍五入 我们的第一个反应是做四舍五入。Math类中的round方法不能设置保留几位小数,我们只能象这样(保留两位):
public double round(double value){
return Math.round(value*100)/100.0;
}
非常不幸,上面的代码并不能正常工作,给这个方法传入4.015它将返回4.01而不是4.02,如我们在上面看到的 4.015*100=401.49999999999994 因此如果我们要做到精确的四舍五入,不能利用简单类型做任何运算 java.text.DecimalFormat也不能解决这个问题:
System.out.println(new java.text.DecimalFormat("0.00").format(4.025));
输出是4.02
精确计算
float和double只能用来做科学计算或者是工程计算,在商业计算中我们要用 java.math.BigDecimal
我们如果需要精确计算,非要用String来够造BigDecimal不可!
divide方法中推荐使用枚举RoundingMode.HALF_UP
import java.io.Serializable;
import java.math.BigDecimal;
import java.math.RoundingMode;
/**
* double的计算不精确,会有类似0.0000000000000002的误差,正确的方法是使用BigDecimal或者用整型
* 整型地方法适合于货币精度已知的情况,比如12.11+1.10转成1211+110计算,最后再/100即可
* 以下是摘抄的BigDecimal方法:
*/
public class DoubleUtil implements Serializable {
private static final long serialVersionUID = -3345205828566485102L;
// 默认除法运算精度
private static final Integer DEF_DIV_SCALE = 2;
/**
* 提供精确的加法运算。
*
* @param value1 被加数
* @param value2 加数
* @return 两个参数的和
*/
public static Double add(Double value1, Double value2) {
BigDecimal b1 = new BigDecimal(Double.toString(value1));
BigDecimal b2 = new BigDecimal(Double.toString(value2));
return b1.add(b2).doubleValue();
}
/**
* 提供精确的减法运算。
*
* @param value1 被减数
* @param value2 减数
* @return 两个参数的差
*/
public static double sub(Double value1, Double value2) {
BigDecimal b1 = new BigDecimal(Double.toString(value1));
BigDecimal b2 = new BigDecimal(Double.toString(value2));
return b1.subtract(b2).doubleValue();
}
/**
* 提供精确的乘法运算。
*
* @param value1 被乘数
* @param value2 乘数
* @return 两个参数的积
*/
public static Double mul(Double value1, Double value2) {
BigDecimal b1 = new BigDecimal(Double.toString(value1));
BigDecimal b2 = new BigDecimal(Double.toString(value2));
return b1.multiply(b2).doubleValue();
}
/**
* 提供(相对)精确的除法运算,当发生除不尽的情况时, 精确到小数点以后10位,以后的数字四舍五入。
*
* @param dividend 被除数
* @param divisor 除数
* @return 两个参数的商
*/
public static Double divide(Double dividend, Double divisor) {
return divide(dividend, divisor, DEF_DIV_SCALE);
}
/**
* 提供(相对)精确的除法运算。 当发生除不尽的情况时,由scale参数指定精度,以后的数字四舍五入。
*
* @param dividend 被除数
* @param divisor 除数
* @param scale 表示表示需要精确到小数点以后几位。
* @return 两个参数的商
*/
public static Double divide(Double dividend, Double divisor, Integer scale) {
if (scale < 0) {
throw new IllegalArgumentException("The scale must be a positive integer or zero");
}
BigDecimal b1 = new BigDecimal(Double.toString(dividend));
BigDecimal b2 = new BigDecimal(Double.toString(divisor));
return b1.divide(b2, scale,RoundingMode.HALF_UP).doubleValue();
}
/**
* 提供指定数值的(精确)小数位四舍五入处理。
*
* @param value 需要四舍五入的数字
* @param scale 小数点后保留几位
* @return 四舍五入后的结果
*/
public static double round(double value,int scale){
if(scale> 32));
}
public boolean equals(Object obj) {
return (obj instanceof Double)
&& (doubleToLongBits(((Double)obj).value) ==
doubleToLongBits(value));
}
public static long doubleToLongBits(double value) {
long result = doubleToRawLongBits(value);
// Check for NaN based on values of bit fields, maximum
// exponent and nonzero significand.
if ( ((result & DoubleConsts.EXP_BIT_MASK) ==
DoubleConsts.EXP_BIT_MASK) &&
(result & DoubleConsts.SIGNIF_BIT_MASK) != 0L)
result = 0x7ff8000000000000L;
return result;
}
public static native long doubleToRawLongBits(double value);
public static native double longBitsToDouble(long bits);
public int compareTo(Double anotherDouble) {
return Double.compare(value, anotherDouble.value);
}
public static int compare(double d1, double d2) {
if (d1 < d2)
return -1; // Neither val is NaN, thisVal is smaller
if (d1 > d2)
return 1; // Neither val is NaN, thisVal is larger
// Cannot use doubleToRawLongBits because of possibility of NaNs.
long thisBits = Double.doubleToLongBits(d1);
long anotherBits = Double.doubleToLongBits(d2);
return (thisBits == anotherBits ? 0 : // Values are equal
(thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1)); // (0.0, -0.0) or (NaN, !NaN)
}
public static double sum(double a, double b) {
return a + b;
}
public static double max(double a, double b) {
return Math.max(a, b);
}
public static double min(double a, double b) {
return Math.min(a, b);
}
private static final long serialVersionUID = -9172774392245257468L;
}
package java.lang;
import java.util.*;
public interface Comparable {
public int compareTo(T o);
}
package java.lang;
public abstract class Number implements java.io.Serializable {
public abstract int intValue();
public abstract long longValue();
public abstract float floatValue();
public abstract double doubleValue();
public byte byteValue() {
return (byte)intValue();
}
public short shortValue() {
return (short)intValue();
}
private static final long serialVersionUID = -8742448824652078965L;
}