您当前的位置: 首页 > 

Adam又要“退休”了?耶鲁大学团队提出AdaBelief,却引来网友质疑

发布时间:2020-10-19 07:00:00 ,浏览量:0

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

晓查 发自 凹非寺  量子位 报道 | 公众号 QbitAI

要挑战Adam地位的优化器又多了一个。

近日NeurIPS 2020收录论文提出的一个优化器,在深度学习社区成为焦点,引起广泛讨论。

这就是由耶鲁大学团队提出的AdaBelief。团队在论文中表示,该优化器兼具Adam的快速收敛特性和SGD的良好泛化性。

所谓AdaBelief,是指根据梯度方向上的“信念”(Belief)来调整训练的步长。它和Adam在算法上的差别并不大。

二者差别在下面的算法实现上可以轻易看出。

相比Adam,AdaBelief没有引入任何其他新参数,只是在最后一步更新时有差异,已在上图中用蓝色标出。

Adam的更新方向是,而AdaBelief的更新方向是。vt和st的差别在于,后者是的指数移动平均(EMA)。

mt可以看做是gt的预测值,当实际值与预测值相差不大时,分母较小,步长较大,权重放心大胆迈开步子更新。

而实际值与预测值相差很大时,AdaBelief倾向于“不相信”当前梯度,此时分母较大,更新步长较短。

为什么AdaBelief更好

只做在最后一步做了了一个小小的改变,未审核会产生如此之大的影响呢?

这主要是因为AdaBelief考虑了两点。

1、损失函数的曲率问题

理想的优化器应该考虑损失函数的曲线,而不是简单地在梯度较大的地方下采取较大的步长。

在“大梯度、小曲率”(图中区域3)情况下很小,优化器应增加其步长。

2、分母中的梯度符号

在上图损失函数为的情况下,蓝色矢量代表梯度,十字叉代表最优解。

Adam优化器在y方向上振荡,并在x方向上保持前进。这是由于。在低方差情况下,Adam中的更新方向接近“符号下降”。

而在AdaBelief中,,因此AdaBelief在x方向上走了一大步,在y方向上只会走一小步,防止振荡产生。

实验结果

在简单的几种3维损失函数曲面上,AdamBelief展现出了优秀的性能。

图像分类

在CIFAR-10和CIFAR-100数据集上,用VGG11、ResNet34和DenseNet121三种网络进行训练,AdaBelief都显示出更好的收敛结果。

而且在ImageNet数据上,AdaBelief在Top-1准确率上仅次于SGD。

时间序列建模

在Penn TreeBank数据集上,用LSTM进行实验,AdaBelief都实现了最低的困惑度。

GAN

在WGAN和WGAN-GP上的实验表明,经AdaBelief训练的结果都得到了最低的FID。

网友质疑

虽然AdaBelief在多个任务上取得了不错的效果,但该方法还是遭到不少网友质疑。

因为这些年来号称取代Adam的优化器不计其数,但最终获得时间检验的却寥寥无几。

网友首先质疑的是实验baseline的选取问题。

有人认为,在CIFAR上,很难相信2020年SOTA模型的准确率低于96%,因此AdaBelief论文最终在选取baseline时有可能是选择了与不太好的结果进行比较。

在ImageNet测试的表2里,为什么要使用ResNet18代替更标准的ResNet50?而且AdaBelief不是最优结果,却用加粗方式标出,容易让人产生误解。绝妙的技巧是将提出的方法的得分加粗。

另外,还有人在作者未测试的NLP任务上进行实验,很快AdaBelief就“崩溃”了,而SGD能够很好地收敛。

AdaBelief不会是最后一个意图取代Adam的优化器,它的泛化能力究竟如何,还有待更多研究者进一步地检验。

项目地址: https://juntang-zhuang.github.io/adabelief/

论文地址: https://arxiv.org/abs/2010.07468

代码地址: https://github.com/juntang-zhuang/Adabelief-Optimizer

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

关注
打赏
1688896170
查看更多评论

暂无认证

  • 0浏览

    0关注

    107388博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文
立即登录/注册

微信扫码登录

0.0467s