您当前的位置: 首页 > 

OmniSLAM:多鱼眼相机的SLAM系统

发布时间:2020-11-15 10:00:00 ,浏览量:0

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

文章:OmniSLAM: Omnidirectional Localization and Dense Mapping for Wide-baseline Multi-camera Systems

作者:Changhee Won, Hochang Seok , Zhaopeng Cui , Marc Pollefeys , and Jongwoo Lim

翻译:分享者

●论文摘要

本文提出了多鱼眼相机的定位和稠密SLAM系统,该系统使用超大视角(FOV)鱼眼相机,可以360°覆盖环境的立体环境。为了更实用、更精确的重建,首先引入改进的、轻量的深度神经网络来进行全方位深度估计,它比现有的网络更快、更精确。其次,将鱼眼相机深度估计整合到视觉里程表(VO)中,并添加一个循环闭合模块以实现地图全局一致性。利用估计的深度图,我们将关键点重新投影到另一个视图上,从而得到一个更好、更有效的特征匹配过程。最后,我们将鱼眼相机深度图和估计的姿态融合到TSDF中,得到三维地图。评估了方法在具有真值和数据集上的性能,大量的实验表明,该系统在合成和真实环境中都能产生良好的重建效果。

上图:输入具有挑战性的室内环境的示例图像。下图:一栋复式建筑的稠密重建图,带有估计的轨迹。轨迹的颜色代表高度值。

● 相关工作与介绍

主要贡献总结如下:

(i) 提出了一种轻量化和改进的网络鱼眼相机的深度估计。网络的精度、参数个数、运行时间等都比以前的版本有了很大的提高,使本系统更加实用。

(ii)通过将深度图集成到ROVO(鲁棒的视觉里程计)中,并增加回环闭合模块,构建了一个鲁棒的全向视觉SLAM系统。在具有挑战性的室内和大型室外环境中,估算的轨迹精度比以前的版本有所提高。

(iii)提出了一个完整的全方位定位和稠密地图系统,并在合成环境和真实的室内外环境中进行了大量的实验,结果表明我们的系统能够为各种场景生成重建良好的三维稠密地图

系统的流程图。首先使用给定的鱼眼图像估计深度图和位姿。如果可用,深度图将集成到视觉里程计中。将输出深度图和位姿融合到TSDF中,以构建3D地图。在后处理过程中,利用回环模块修正后的姿态建立全局一致的地图。

● 内容精华

A、 全深度估计

采用端到端网络OmniMVS,并在此基础上提出了Light-weighted OmniMVS。

B、视觉SLAM

定位也是三维稠密SLAM的重要组成部分,根据提出的ROVO[14]对全向立体鱼眼相机系统的姿态进行了稳健估计。在文章中,ROVO有四个步骤:鱼眼相机的投影、跟踪和匹配、姿态估计和联合优化。首先,将输入的鱼眼图像进行视觉矫正,在投影图像中检测到球的特征。其次,利用KLT对检测到的球体特征进行光流跟踪,并在相邻摄像机之间进行特征匹配。然后,跟踪上的特征被三角化到每个对应的3D点。第三,利用2D-3D特征对应关系,利用多视点P3P-RANSAC初始化姿态,并通过pose only bundle平差(BA)进行优化。最后,利用局部光束平差(LBA)同时对估计的姿态和观测到的三维点进行优化。

C. 基于TSDF稠密地图

为了获得全局的3D地图,将估计的全深度图和姿态融合到TSDF中。

● 实验

稠密地图结果的评估。顶部:完整性,底部:准确性。图例中显示了每种方法的平均比率。我们使用OmniMVS[15]、OmniMVS+和Tiny+作为深度;GT轨迹、ROVO[14]和ROVO+用于姿势。

我们对Wangsimni数据集是否有闭环检测的影响对比。与检测到的回路闭合的轨迹比较结果。

数据集的稠密SLAM结果。

(a)光照强烈的环境下。绿色代表GT地图。我们的ROVO+减少了估计姿态的漂移误差。

(b) 车库环境下。绿色表示前摄像头的估计轨迹

Wangsimni数据集的定性结果。左图:在卫星图像上垂直投影的估计轨迹。右:对应的稠密映射结果。我们将直方图均衡化应用于顶点颜色的可视化。

●总结

本文提出了一种适用于多鱼眼相机的定位与稠密地图的SLAM系统。该方法在参数较少的情况下,快速、准确地估计出全方位深度图。然后将输出深度图集成到视觉里程计中,提出的视觉SLAM模块实现了较好的姿态估计性能。实验表明,该系统能够生成良好的合成环境和真实环境三维地图。

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

关注
打赏
1688896170
查看更多评论

暂无认证

  • 0浏览

    0关注

    106622博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文
立即登录/注册

微信扫码登录

0.0498s