您当前的位置: 首页 >  深度学习

使用深度学习从视频中估计车辆的速度

发布时间:2020-11-20 07:00:00 ,浏览量:0

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

作者:Sharif Elfouly

编译:ronghuaiyang

编辑:AI公园

导读

使用光流 + CNN的方法来预测车辆的速度,用PyTorch实现,有代码。

代码:https://github.com/SharifElfouly/vehicle-speed-estimation

我想要解决的问题是:在一辆车里有一个摄像头,我想知道车开得有多快。你显然不能看速度表,只能看视频片段本身。深度学习魔法应该能帮助我们。

数据

我有两个不同的视频。一个用于训练,另一个用于测试。训练视频有20399帧,测试视频有10797帧。视频下载地址:https://github.com/commaai/speedchallenge。下面是一些例子:

视频中的样本图像

训练视频的标签是a .txt文件,其中每一行对应于特定帧的速度。

方法

这个问题最有趣的地方是你的神经网络输入会是什么样子。仅从一个静态图像计算速度是不可能的。一种有效的方法是将两个或更多的图像堆叠在一起,或者像LSTM或Transformer那样连续地堆叠。另一个是计算光流,我决定用它。

什么是光流?它基本上是一种为每个像素计算矢量的方法,告诉你两幅图像之间的相对运动。有一个很棒的computerphile视频:https://www.youtube.com/watch?v=4v_keMNROv4,你可以了解更多细节。有一些“经典”的计算机视觉算法可以用来计算光流,但深度学习已经变得更好了(这一点也不奇怪)。那么什么是SOTA方法,让我们看看paperswithcode:

RAFT 看起来不错,它还有PyTorch的实现。我forked原始存储库,并使其更简单一些。我不需要训练,评估等等。我只会用它来推理。

计算光流

为了进行推断,网络将两幅图像拼接起来,并预测了一个维度为*(2, image_height, image_width)*的张量。如前所述,图像中的每个像素对应一个二维向量。我们将在实际训练中使用这些文件,因此我们将它们保存为.npy文件。如果你想象光流图像它会是这样的:

训练

记住我们训练的目的:

光流→模型→车速估计

我选择的模型是EfficientNet。我非常喜欢它,因为它的可扩展性。它有8个不同的版本供你选择,最大的一个,EfficientNet-B7仍然非常非常好。你可以从一个像B0这样的小变体开始,然后如果一切工作正常,你有一个足够好的GPU,你可以选择一个更大的。还有一个PyTorch库,我会使用它来非常容易地加载预先训练好的网络模型,地址:https://github.com/lukemelas/effecentnet-PyTorch。如果你打开[train.ipynb](https://github.com/sharifelfouly/vehicle-speed - estimate),你就可以看到训练是如何运作的。

我总是从B0开始,然后放大到B3,因为我的GPU只有6 GB内存。经过训练,我得到如下结果(loss为均方误差):

训练损失

验证损失

很好,看起来一切都很正常!训练和验证损失都在降低,网络没有过拟合。

结果如下:

虽然不完美,但它确实有一些用 总结

我通常不太喜欢特征工程,但我认为在这种情况下它做得很好。下一步是尝试一些序列化的东西,比如Transformer或LSTM。

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

关注
打赏
1688896170
查看更多评论

暂无认证

  • 0浏览

    0关注

    106593博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文
立即登录/注册

微信扫码登录

0.0463s