您当前的位置: 首页 > 

HoPE杂乱场景的点云数据平面的提取

发布时间:2020-12-25 11:40:00 ,浏览量:0

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

标题:HoPE: Horizontal Plane Extractor for Cluttered 3D Scenes

作者:Dong, Zhipeng and Gao, Yi and Zhang, Jinfeng and Yan

星球ID:particle

欢迎各位加入免费知识星球,获取PDF论文,欢迎转发朋友圈分享快乐。

●论文摘要

在杂乱的三维场景中提取水平面是许多机器人应用的基本步骤。针对一般平面分割方法在这一问题上的局限性,我们提出了一种新的平面提取的算法,它能够在杂乱的有序点云或者是无序点云数据中高效的提取平面。通过预校准或惯性测量单元获得的传感器方向将源点云转换为参考坐标系,提出了一种改进的区域增长算法与Z轴聚类算法结合,一种基于主成分分析(PCA)的点云聚类和分割的方法。此外,我们还提出了一种最近邻平面匹配(NNPM)策略来保持连续序列中提取平面的稳定性。对真实场景和合成场景的定性和定量评估表明,我们的方法在对有噪声的点云数据的处理的鲁棒性、准确性和效率方面优于几种最新的方法。并且该算法已经在github 开源:

https://github.com/DrawZeroPoint/hope

●主要贡献

(1)根据三维点云采集设备定向的角度对点云数据进行变换从而简化水平面提取的过程,提供了快速且稳健的点云聚类和分割以及识别的方法。

(2)以一种合理的方式尽量的减少使用阈值的数量来减少算法的不稳定性,能够在预期的精度和高效的计算时间里达到较好的分割效果。

(3)与点云库PCL以及机器人操作系统(ROS)兼容且开源。

●论文图集

多平面提取的算法流程

使用RANSAC和区域增长方法与论文中算法的对比截图

文本提出了一个用于从中提取多个水平面的框架,在混乱场景中获得的有组织的和无组织的3D点云。充分利用采集点云数据的方向信息,并简化包括下采样,点云聚类,细化,和结果识别,算法在第一阶段使用了传感器方向的先验知识将源点云转换为参考点云,其z轴指向上方。该算法框架提供了一些专用的且新颖的功能,能够提供稳健且高效的结果。并且框架的潜在优势还在于场景大小的可变性及其对提取的内容进行连续标识的能力。在真实数据集上的实验表明,即便是动态的场景我们的方法可以保持结果的一致性。

●英文摘要

Extracting horizontal planes in heavily cluttered three-dimensional (3D) scenes is an essential procedure for many robotic applications. Aiming at the limitations of general plane segmentation methods on this subject, we present HoPE, a Horizontal Plane Extractor that is able to extract multiple horizontal planes in cluttered scenes with both organized and unorganized 3D point clouds. It transforms the source point cloud in the first stage to the reference coordinate frame using the sensor orientation acquired either by pre-calibration or an inertial measurement unit, thereby leveraging the inner structure of the transformed point cloud to ease the subsequent processes that use two concise thresholds for producing the results. A revised region growing algorithm named Z clustering and a principal component analysis (PCA)-based approach are presented for point clustering and refinement, respectively. Furthermore, we provide a nearest neighbor plane matching (NNPM) strategy to preserve the identities of extracted planes across successive sequences. Qualitative and quantitative evaluations of both real and synthetic scenes demonstrate that our approach outperforms several state-of-the-art methods under challenging circumstances, in terms of robustness to clutter, accuracy, and efficiency. We make our algorithm an off-the-shelf toolbox which is publicly available.

本文仅做学术分享,如有侵权,请联系删文。

下载1

在「3D视觉工坊」公众号后台回复:3D视觉,即可下载 3D视觉相关资料干货,涉及相机标定、三维重建、立体视觉、SLAM、深度学习、点云后处理、多视图几何等方向。

下载2

在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码汇总等。

下载3

在「3D视觉工坊」公众号后台回复:相机标定,即可下载独家相机标定学习课件与视频网址;后台回复:立体匹配,即可下载独家立体匹配学习课件与视频网址。

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

▲长按加微信群或投稿

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

 圈里有高质量教程资料、可答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

关注
打赏
1688896170
查看更多评论

暂无认证

  • 0浏览

    0关注

    104724博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文
立即登录/注册

微信扫码登录

0.0502s