SDCNet: Size Divide and Conquer Network for Salient Object Detection
Senbo Yan, Xiaowen Song, and Chuer Yu
论文及代码下载:
在微信公众号「3D视觉工坊」后台,回复「RGB检测」,即可获取论文及代码下载链接。
简介:为了解决现有的显著物体检测方法在检测小对象或大对象方面比较困难这一问题,该文提出了一种大小划分和征服网络(SDCNet),用以分别学习不同大小的突出对象的特征,以便提高检测性能。具体来说,SDCNet包含两个主要方面:(1)通过计算具有像素级的地面真相图像中物体的比例,并训练一个大小推理模块(SIM)来预测突出物体的大小。(2)提出了一种多通道尺寸划分模块(MSDM),分别学习不同尺寸的显著物体的特征。详细地,使用MSDM跟踪骨干网络的每个块,并使用不同的通道在不同的分辨率下提取不同大小范围内的突出对象的特征。与耦合附加特征不同,该文基于对不同数据分布的分治思想对网络进行编码,并专门学习不同大小的显著对象的特征。实验结果表明,SDCNet在五个基准数据集上的性能优于14种最先进的方法。
主要贡献:
-
该文提出了一种新的网络设计方法来划分和克服不同的数据分布。MSDM可以分别学习不同大小范围的突出对象的特征。这种基于数据特征的网络设计是有意义的。
-
该文提供了一个有效的思路,将数据集划分为不同的大小分类,来解决显著对