您当前的位置: 首页 > 

暂无认证

  • 2浏览

    0关注

    101061博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

EF-Net一种适用于双流SOD的有效检测模型(Pattern Recognition)

发布时间:2021-01-13 07:00:00 ,浏览量:2

 

论文地址:在公众号「3D视觉工坊」,后台回复「EF-Net」,即可直接下载。

简介

显著目标检测(SOD)在计算机视觉领域得到了广泛的关注。但面临低质量的深度图,现有模型的检测结果都不是很理想。为了解决这一问题,该文提出了一种新型多模态增强融合网络(EF-Net),用于有效的RGB-D显性检测。具体来说,首先仅仅利用RGB图像提示映射模块来预测提示映射,编码突出对象的粗略信息。然后利用得到的提示图经过深度增强模块来增强深度图,从而抑制噪声并锐化对象边界。最后,该文构造了分层聚合模块,用于融合增强后的深度图与RGB图像中提取的特征,以精确地检测突出对象。该文提出的EFNet利用增强和融合框架进行显着性检测,充分利用了RGB图像和深度图中的信息,有效地解决了深度图的低质量问题,显著提高了显着性检测性能。在五个广泛使用的基准数据集上的广泛实验表明,该方法在五个关键评价指标方面优于12种最先进的RGB-D显着性检测方法。

主要贡献

关注
打赏
1655516835
查看更多评论
立即登录/注册

微信扫码登录

0.0477s