摘要: Kaggle最近进行了一项旨在评估数据科学和机器学习当前发展状况的调查。 他们收到了将近17000份答卷,并利用这些答卷做出了大量的分析。
Kaggle最近进行了一项旨在评估数据科学和机器学习当前发展状况的调查。 他们收到了将近17000份答卷,并利用这些答卷做出了大量的分析。对于调查结果的分析报告,我并不感兴趣,我只是想看看这些调查结果是否对我这种想知道如何成为数据科学家的人来说是否有用。
如果你对分析过程并不感兴趣,而只想看看17000个行业专业人士的说法,那么请跳到本文的最后一节阅读结论。 否则,请继续阅读下文,看看我是如何得出结论的。
1. 导入和预处理 1.1. 导入数据library(data.table)library(dplyr, warn.conflicts =FALSE)library(ggplot2)library(tibble)
results %
summarize(n = n())%>%
mutate(freq = n /sum(n)*100)%>%
ggplot(aes(x = title, y = freq, fill = Major, label =ifelse(freq >8,round(freq),"")))+
ggtitle("Major vs. Job Title")+
labs(x ="Job Title", y ="Frequency (%)")+
geom_bar(stat ="identity", position = position_stack())+
geom_text(position = position_stack(vjust =0.5))+
scale_y_continuous(expand =c(0,0))+
jack_theme +
theme(
axis.title.x = element_text(margin = margin(t =8)),
axis.text.x = element_text(angle =320, hjust =0))
我的直觉基本上是正确的,专业是预测某人未来会从事哪些工作的最好依据。其中一些趋势是显而易见的:计算机科学专业的人倾向于成为计算机科学家、程序员和软件工程师,而数学专业则倾向于成为统计学家和预测模型师。大部分物理学专业都进入了研究领域,而非计算机科学工程专业的人则称自己为工程师。
我个人非常喜欢这个图表,每个专业的人都涵盖了所有的职位。对我来说,这表明不管你在学校里学的是什么专业,只要有激情,你就可以做好你想做的事。
3. 学什么 3.1. 学习资源调查问卷中有一个问题是关于学习资源对学习数据科学的用处有多大。在下一张图表中,我绘制了每个学习资源受欢迎程度和有用性之间的关系。受欢迎度是回答这个问题的人数,有用性则是答案和回答者数量的的加权平均值。如果答案是“非常有用”,则权重为1,“有点有用”权重为0.5,如果没有用处,则权重为零。在这个图表中,我们不仅可以看到哪里的资源最有用,而且可以知道哪里的资源被过度使用或利用不足。
# Get all column names that begin with "LearningPlatformUsefulness"
platforms
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?


微信扫码登录