您当前的位置: 首页 > 

阿里云云栖号

暂无认证

  • 0浏览

    0关注

    5305博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

利用blink CEP实现流计算中的超时统计问题

阿里云云栖号 发布时间:2019-03-06 14:48:28 ,浏览量:0

案例与解决方案汇总页:阿里云实时计算产品案例&解决方案汇总

一. 背景介绍

如一文中所描述的场景,我们将其简化为以下案例: 实时流的数据源结构如下:

物流订单号支付时间仓接单时间仓出库时间LP12018-08-01 08:00  LP12018-08-01 08:002018-08-01 09:00 LP22018-08-01 09:10 ​LP22018-08-01 09:102018-08-01 09:50 LP22018-08-01 09:102018-08-01 09:50​2018-08-01 12:00

我们期望通过以上数据源,按照支付日期统计,每个仓库的仓接单量、仓出库量、仓接单超2H未出库单量、仓接单超6H未出库单量。可以看出,其中LP1仓接单时间是2018-08-01 09:00,但一直到2018-08-01 12:00点之前,一直都没有出库,LP1满足仓接单超2H未出库的行为。

该场景的难点就在于:订单未出库。而对于TT中的源消息流,订单未出库,TT就不会下发新的消息,不下发新的消息,blink就无法被触发计算。而针对上述的场景,对于LP1,我们需要在仓接单时间是2018-08-01 09:00+2H,也就是2018-08-01 11:00的之后,就要知道LP1已经仓接单但超2H未出库了。

二. 解决方案

本文主要是利用blink CEP来实现上述场景,具体实现步骤如下所述。 第一步:在source DDL中定义event_timestamp,并定义sink,如下:

----定义source
create table sourcett_dwd_ri
(
     lg_order_code                  varchar comment '物流订单号'
    ,ded_pay_time                   varchar comment '支付时间'
    ,store_code                     varchar comment '仓库编码'
    ,store_name                     varchar comment '仓库名称'
    ,wms_create_time                varchar comment '仓接单时间'
    ,wms_consign_create_time        varchar comment '仓出库时间'
    ,evtstamp as case when coalesce(wms_create_time, '')  ''
                      then to_timestamp(wms_create_time, 'yyyy-MM-dd HH:mm:ss')
                      else to_timestamp('1970-01-01 00:00:00', 'yyyy-MM-dd HH:mm:ss')
                 end   --构造event_timestamp,如果源表本身带有消息的occur_time,可直接选择occur_time作为event_timestamp
    ,WATERMARK FOR evtstamp AS withOffset(evtstamp, 10000)  --设置延迟10秒处理
)
with
(
     type='tt'
    ,topic='dwd_ri'
    ,accessKey='xxxxxx'
    ,accessId='xxxxxx'
    ,lengthCheck='PAD'
    ,nullValues='\\N|'
);


----定义sink
create table sink_hybrid_blink_cep
(
     ded_pay_date                   varchar comment '支付日期'
    ,store_code                     varchar comment '仓库编码'
    ,store_name                     varchar comment '仓库名称'
    ,wms_create_ord_cnt             bigint  comment '仓接单量'
    ,wms_confirm_ord_cnt            bigint  comment '仓出库量'
    ,wmsin_nowmsout_2h_ord_cnt      bigint  comment '仓接单超2小时未出库单量'
    ,wmsin_nowmsout_6h_ord_cnt      bigint  comment '仓接单超6小时未出库单量'    
    ,sub_partition                  bigint  comment '二级分区(支付日期)'
    ,PRIMARY KEY (ded_pay_date, store_code, sub_partition)
)
with
(
     type='PetaData'
    ,url = 'xxxxxx'
    ,tableName='blink_cep'
    ,userName='xxxxxx'
    ,password='xxxxxx'
    ,bufferSize='30000'
    ,batchSize='3000'
    ,batchWriteTimeoutMs='15000'
);

第二步:根据blink CEP的标准语义进行改写,如下:

create view blink_cep_v1
as
select   '仓接单-仓出库超时' as timeout_type
        ,lg_order_code
        ,wms_create_time as start_time
        ,wms_consign_create_time as end_time
from     source_dwd_csn_whc_lgt_fl_ord_ri
MATCH_RECOGNIZE
(
         PARTITION BY lg_order_code
         ORDER BY     evtstamp
         MEASURES
                      e1.wms_create_time         as wms_create_time
                     ,e2.wms_consign_create_time as wms_consign_create_time
         ONE ROW PER MATCH WITH TIMEOUT ROWS  --重要,必须设置延迟也下发
         AFTER MATCH SKIP TO NEXT ROW
         PATTERN (e1 -> e2) WITHIN INTERVAL '6' HOUR
         EMIT TIMEOUT (INTERVAL '2' HOUR, INTERVAL '6' HOUR)
         DEFINE
             e1 as e1.wms_create_time is not null and e1.wms_consign_create_time is null
            ,e2 as e2.wms_create_time is not null and e2.wms_consign_create_time is not null
)
where    wms_create_time is not null      --重要,可以大大减少进入CEP的消息量
and      wms_consign_create_time is null  --重要,可以大大减少进入CEP的消息量
;

第三步:根据blink的执行机制,我们通过源实时流sourcett_dwd_ri与超时消息流blink_cep_v1关联,来触发blink对超时消息进行聚合操作,如下:

create view blink_cep_v2
as
select   a.lg_order_code                       as lg_order_code
        ,last_value(a.store_code             ) as store_code
        ,last_value(a.store_name             ) as store_name
        ,last_value(a.ded_pay_time           ) as ded_pay_time
        ,last_value(a.wms_create_time        ) as wms_create_time
        ,last_value(a.real_wms_confirm_time  ) as real_wms_confirm_time
        ,last_value(case when coalesce(a.wms_create_time, '')  ''
                         and  coalesce(a.real_wms_confirm_time, '') = '' 
                         and  now() - unix_timestamp(a.wms_create_time,'yyyy-MM-dd HH:mm:ss') >= 7200
                         then 'Y' else 'N' end) as flag_01
        ,last_value(case when coalesce(a.wms_create_time, '')  ''
                         and  coalesce(a.real_wms_confirm_time, '') = '' 
                         and  now() - unix_timestamp(a.wms_create_time,'yyyy-MM-dd HH:mm:ss') >= 21600
                         then 'Y' else 'N' end) as flag_02
from
        (select   lg_order_code                       as lg_order_code
                 ,last_value(store_code             ) as store_code
                 ,last_value(store_name             ) as store_name
                 ,last_value(ded_pay_time           ) as ded_pay_time
                 ,last_value(wms_create_time        ) as wms_create_time
                 ,last_value(wms_consign_create_time) as real_wms_confirm_time
         from     sourcett_dwd_ri
         group by lg_order_code
         ) a
left outer join
        (select   lg_order_code
                 ,count(*) as cnt
         from     blink_cep_v1
         group by lg_order_code
         ) b
on       a.lg_order_code = b.lg_order_code
group by a.lg_order_code
;


insert into sink_hybrid_blink_cep
select   regexp_replace(substring(a.ded_pay_time, 1, 10), '-', '') as ded_pay_date
        ,a.store_code
        ,max(a.store_name)        as store_name
        ,count(case when coalesce(a.wms_create_time, '')  '' then a.lg_order_code end) as wmsin_ord_cnt
        ,count(case when coalesce(a.real_wms_confirm_time, '')  '' then a.lg_order_code end) as wmsout_ord_cnt
        ,count(case when a.flag_01 = 'Y' then a.lg_order_code end) as wmsin_nowmsout_2h_ord_cnt
        ,count(case when a.flag_02 = 'Y' then a.lg_order_code end) as wmsin_nowmsout_6h_ord_cnt
        ,cast(regexp_replace(SUBSTRING(ded_pay_time, 1, 10), '-', '') as bigint) as sub_partition
from     blink_cep_v2 as t1
where    coalesce(lg_cancel_time, '') = ''
and      coalesce(ded_pay_time, '')  ''
group by regexp_replace(substring(ded_pay_time, 1, 10), '-', '')
        ,a.store_code
;
三. 问题拓展
  1. blink CEP的参数比较多,要完全看懂,着实需要一些时间,但CEP的强大是毋庸置疑的。CEP不仅可以解决物流场景中的超时统计问题,风控中的很多场景也是信手拈来。这里有一个风控中的场景,通过上述物流案例的用法,我们是否能推敲出这个场景的用法呢? 风控案例测试数据如下:
刷卡时间银行卡ID刷卡地点2018-04-13 12:00:001WW2018-04-13 12:05:001WW12018-04-13 12:10:001WW22018-04-13 12:20:001WW

我们认为,当一张银行卡在10min之内,在不同的地点被刷卡大于等于两次,我们就期望对消费者出发预警机制。

  1. blink CEP是万能的么?答案是否定的,当消息乱序程度比较高的时候,实时性和准确性就成了一对矛盾的存在。要想实时性比较高,必然要求设置的offset越小越好,但offset设置比较小,就直接可能导致很多eventtime
关注
打赏
1664438436
查看更多评论
立即登录/注册

微信扫码登录

0.0650s