之前的文章我们讲了count排序,但是count排序有个限制,因为count数组是有限的,如果数组中的元素范围过大,使用count排序是不现实的,其时间复杂度会膨胀。
而解决大范围的元素排序的办法就是基数排序。
基数排序的例子什么是基数排序呢?
考虑一下,虽然我们不能直接将所有范围内的数字都使用count数组进行排序,但是我们可以考虑按数字的位数来进行n轮count排序,每一轮都只对数字的某一位进行排序。
最终仍然可以得到结果,并且还可以摆脱count数组大小的限制,这就是基数排序。
假如我们现在数组的元素是:1221, 15, 20, 3681, 277, 5420, 71, 1522, 4793。
先看动画,看下最直观的基数排序的过程:
在上面的例子中,我们先对个位进行count排序,然后对十位进行count排序,然后是百位和千位。
最后生成最终的排序结果。
基数排序的java代码实现因为基数排序实际上是分别按位数的count排序。所以我们可以重用之前写的count排序的代码,只是需要进行一些改造。
doCountingSort方法除了传入数组外,还需要传入排序的位数digit,我们用1,10,100,1000来表示。
看一下改造过后的doCountingSort方法:
public void doRadixSort(int[] array, int digit){
int n = array.length;
// 存储排序过后的数组
int output[] = new int[n];
// count数组,用来存储统计各个元素出现的次数
int count[] = new int[10];
Arrays.fill(count,0);
log.info("初始化count值:{}",count);
// 将原始数组中数据出现次数存入count数组
for (int i=0; i 0; digit *= 10){
radixSort.doRadixSort(array,digit);
}
}
看下输出结果:
很好,结果都排序了。
基数排序的时间复杂度从计算过程我们可以看出,基数排序的时间复杂度是O(d*(n+b)) ,其中b是数字的进制数,比如上面我们使用的是10进制,那么b=10。
d是需要循环的轮数,也就是数组中最大数的位数。假如数组中最大的数字用K表示,那么d=logb(k)。
综上,基数排序的时间复杂度是O((n+b) * logb(k))。
当k