您当前的位置: 首页 >  小程序

阿里云云栖号

暂无认证

  • 1浏览

    0关注

    5305博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

基于 Serverless 架构的头像漫画风处理小程序

阿里云云栖号 发布时间:2022-04-11 09:47:35 ,浏览量:1

简介: 当一个程序员想要个漫画风的头像时...

前言

我一直都想要有一个漫画版的头像,奈何手太笨,用了很多软件 “捏不出来”,所以就在想着,是否可以基于 AI 实现这样一个功能,并部署到 Serverless 架构上让更多人来尝试使用呢?

后端项目

后端项目采用业界鼎鼎有名的动漫风格转化滤镜库 AnimeGAN 的 v2 版本,效果大概如下:

关于这个模型的具体的信息,在这里不做详细的介绍和说明。通过与 Python Web 框架结合,将 AI 模型通过接口对外暴露:

from PIL import Image
import io
import torch
import base64
import bottle
import random
import json
cacheDir = '/tmp/'
modelDir = './model/bryandlee_animegan2-pytorch_main'
getModel = lambda modelName: torch.hub.load(modelDir, "generator", pretrained=modelName, source='local')
models = {
    'celeba_distill': getModel('celeba_distill'),
    'face_paint_512_v1': getModel('face_paint_512_v1'),
    'face_paint_512_v2': getModel('face_paint_512_v2'),
    'paprika': getModel('paprika')
}
randomStr = lambda num=5: "".join(random.sample('abcdefghijklmnopqrstuvwxyz', num))
face2paint = torch.hub.load(modelDir, "face2paint", size=512, source='local')
@bottle.route('/images/comic_style', method='POST')
def getComicStyle():
    result = {}
    try:
        postData = json.loads(bottle.request.body.read().decode("utf-8"))
        style = postData.get("style", 'celeba_distill')
        image = postData.get("image")
        localName = randomStr(10)
        # 图片获取
        imagePath = cacheDir + localName
        with open(imagePath, 'wb') as f:
            f.write(base64.b64decode(image))
        # 内容预测
        model = models[style]
        imgAttr = Image.open(imagePath).convert("RGB")
        outAttr = face2paint(model, imgAttr)
        img_buffer = io.BytesIO()
        outAttr.save(img_buffer, format='JPEG')
        byte_data = img_buffer.getvalue()
        img_buffer.close()
        result["photo"] = 'data:image/jpg;base64, %s' % base64.b64encode(byte_data).decode()
    except Exception as e:
        print("ERROR: ", e)
        result["error"] = True
    return result
app = bottle.default_app()
if __name__ == "__main__":
    bottle.run(host='localhost', port=8099)

整个代码是基于 Serverless 架构进行了部分改良的:

  1. 实例初始化的时候,进行模型的加载,已经可能的减少频繁的冷启动带来的影响情况;
  2. 在函数模式下,往往只有/tmp目录是可写的,所以图片会被缓存到/tmp目录下;
  3. 虽然说函数计算是“无状态”的,但是实际上也有复用的情况,所有数据在存储到tmp的时候进行了随机命名;
  4. 虽然部分云厂商支持二进制的文件上传,但是大部分的 Serverless 架构对二进制上传支持的并不友好,所以这里依旧采用 Base64 上传的方案;

上面的代码,更多是和 AI 相关的,除此之外,还需要有一个获取模型列表,以及模型路径等相关信息的接口:

import bottle
@bottle.route('/system/styles', method='GET')
def styles():
    return {
      "AI动漫风": {
        'color': 'red',
        'detailList': {
          "风格1": {
            'uri': "images/comic_style",
            'name': 'celeba_distill',
            'color': 'orange',
            'preview': 'https://serverless-article-picture.oss-cn-hangzhou.aliyuncs.com/1647773808708_20220320105649389392.png'
          },
          "风格2": {
            'uri': "images/comic_style",
            'name': 'face_paint_512_v1',
            'color': 'blue',
            'preview': 'https://serverless-article-picture.oss-cn-hangzhou.aliyuncs.com/1647773875279_20220320105756071508.png'
          },
          "风格3": {
            'uri': "images/comic_style",
            'name': 'face_paint_512_v2',
            'color': 'pink',
            'preview': 'https://serverless-article-picture.oss-cn-hangzhou.aliyuncs.com/1647773926924_20220320105847286510.png'
          },
          "风格4": {
            'uri': "images/comic_style",
            'name': 'paprika',
            'color': 'cyan',
            'preview': 'https://serverless-article-picture.oss-cn-hangzhou.aliyuncs.com/1647773976277_20220320105936594662.png'
          },
        }
      },
    }
app = bottle.default_app()
if __name__ == "__main__":
    bottle.run(host='localhost', port=8099)

可以看到,此时我的做法是,新增了一个函数作为新接口对外暴露,那么为什么不在刚刚的项目中,增加这样的一个接口呢?而是要多维护一个函数呢?

  1. AI 模型加载速度慢,如果把获取AI处理列表的接口集成进去,势必会影响该接口的性能;
  2. AI 模型所需配置的内存会比较多,而获取 AI 处理列表的接口所需要的内存非常少,而内存会和计费有一定的关系,所以分开有助于成本的降低;

关于第二个接口(获取 AI 处理列表的接口),相对来说是比较简单的,没什么问题,但是针对第一个 AI 模型的接口,就有比较头疼的点:

  1. 模型所需要的依赖,可能涉及到一些二进制编译的过程,所以导致无法直接跨平台使用;
  2. 模型文件比较大 (单纯的 Pytorch 就超过 800M),函数计算的上传代码最多才 100M,所以这个项目无法直接上传;

所以这里需要借助 Serverless Devs 项目来进行处理:

参考 Yaml规范 - Serverless Devs

完成 s.yaml 的编写:

edition: 1.0.0
name: start-ai
access: "default"
vars: # 全局变量
  region: cn-hangzhou
  service:
    name: ai
    nasConfig:                  # NAS配置, 配置后function可以访问指定NAS
      userId: 10003             # userID, 默认为10003
      groupId: 10003            # groupID, 默认为10003
      mountPoints:              # 目录配置
        - serverAddr: 0fe764bf9d-kci94.cn-hangzhou.nas.aliyuncs.com # NAS 服务器地址
          nasDir: /python3
          fcDir: /mnt/python3
    vpcConfig:
      vpcId: vpc-bp1rmyncqxoagiyqnbcxk
      securityGroupId: sg-bp1dpxwusntfryekord6
      vswitchIds:
        - vsw-bp1wqgi5lptlmk8nk5yi0
services:
  image:
    component:  fc
    props: #  组件的属性值
      region: ${vars.region}
      service: ${vars.service}
      function:
        name: image_server
        description: 图片处理服务
        runtime: python3
        codeUri: ./
        ossBucket: temp-code-cn-hangzhou
        handler: index.app
        memorySize: 3072
        timeout: 300
        environmentVariables:
          PYTHONUSERBASE: /mnt/python3/python
      triggers:
        - name: httpTrigger
          type: http
          config:
            authType: anonymous
            methods:
              - GET
              - POST
              - PUT
      customDomains:
        - domainName: avatar.aialbum.net
          protocol: HTTP
          routeConfigs:
            - path: /*

然后进行:

1、依赖的安装:s build --use-docker

2、项目的部署:s deploy

3、在 NAS 中创建目录,上传依赖:

s nas command mkdir /mnt/python3/python
s nas upload -r 本地依赖路径 /mnt/python3/python

完成之后可以通过接口对项目进行测试。

另外,微信小程序需要 https 的后台接口,所以这里还需要配置 https 相关的证书信息,此处不做展开。

小程序项目

小程序项目依旧采用 colorUi,整个项目就只有一个页面:

页面相关布局:

  
  
    
      第一步:选择图片
    
  
  
    
      本地上传图片
      获取当前头像
    
  
              
关注
打赏
1664438436
查看更多评论
立即登录/注册

微信扫码登录

0.0703s