您当前的位置: 首页 >  深度学习

庄小焱

暂无认证

  • 3浏览

    0关注

    800博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

深度学习项目实战——Kaggle竞赛(SIIM-FISABIO-RSNA COVID-19 Detection)

庄小焱 发布时间:2021-07-05 20:29:21 ,浏览量:3

Overview

Five times more deadly than the flu, COVID-19 causes significant morbidity and mortality. Like other pneumonias, pulmonary infection with COVID-19 results in inflammation and fluid in the lungs. COVID-19 looks very similar to other viral and bacterial pneumonias on chest radiographs, which makes it difficult to diagnose. Your computer vision model to detect and localize COVID-19 would help doctors provide a quick and confident diagnosis. As a result, patients could get the right treatment before the most severe effects of the virus take hold.

Currently, COVID-19 can be diagnosed via polymerase chain reaction to detect genetic material from the virus or chest radiograph. However, it can take a few hours and sometimes days before the molecular test results are back. By contrast, chest radiographs can be obtained in minutes. While guidelines exist to help radiologists differentiate COVID-19 from other types of infection, their assessments vary. In addition, non-radiologists could be supported with better localization of the disease, such as with a visual bounding box.

As the leading healthcare organization in their field, the Society for Imaging Informatics in Medicine (SIIM)'s mission is to advance medical imaging informatics through education, research, and innovation. SIIM has partnered with the Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Medical Imaging Databank of the Valencia Region (BIMCV) and the Radiological Society of North America (RSNA) for this competition.

In this competition, you’ll identify and localize COVID-19 abnormalities on chest radiographs. In particular, you'll categorize the radiographs as negative for pneumonia or typical, indeterminate, or atypical for COVID-19. You and your model will work with imaging data and annotations from a group of radiologists.

Data

code

Discussion

关注
打赏
1657692014
查看更多评论
立即登录/注册

微信扫码登录

0.2729s