您当前的位置: 首页 > 

庄小焱

暂无认证

  • 2浏览

    0关注

    805博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

JDK源码——CAS实现原理

庄小焱 发布时间:2021-11-28 16:50:41 ,浏览量:2

摘要

CAS的全称为Compare And Swap,是unsafe的一个方法。主要是为了保证在多线程下保证多变量修改的原子性操作。CAS执行的是一条CPU的原子指令,其作用是让CPU先进行比较两个值是否相等,然后原子地更新某个位置的值,其实现方式是基于硬件平台的汇编指令,在intel的CPU中,使用的是cmpxchg指令,就是说CAS是靠硬件实现的,从而在硬件层面提升效率。如果在多核CPU的环境下,在CAS的底层实现将会增加一个lock指令来对缓存和总线进行加锁的操作,从而保证CAS的操作原子性。主要的应用场景是JUC的Atomic的原子实现例如:AtomicInteger和AtomicLong类。还有就是的实现多线程对共享资源的竞争的互斥性操作,例如:AQS,CurrentHashMap,ConcurrntlinkQueue类。

一、CAS原理

利用CPU的CAS指令,同时借助JNI来完成Java的非阻塞算法,其它原子操作都是利用类似的特性完成的。 在 java.util.concurrent 下面的源码中,Atomic, ReentrantLock 都使用了Unsafe类中的方法来保证并发的安全性。

CAS操作是原子性的,所以多线程并发使用CAS更新数据时,可以不使用锁,JDK中大量使用了CAS来更新数据而防止加锁来保持原子更新。CAS 操作包含三个操作数 :内存偏移量位置(V)、预期原值(A)和新值(B)。 如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值更新为新值 。否则,处理器不做任何操作。

// 使用 unsafe 类的原子操作方式
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
 
static {
    try {
        //计算变量 value 在类对象中的偏移量
        valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));
    } catch (Exception ex) { throw new Error(ex); }
}

Unsafe 调用C 语言可以通过偏移量对变量进行操作

//volatile变量value
private volatile int value;
 
 /**
 * 创建具有给定初始值的新 AtomicInteger
 *
 * @param initialValue 初始值
 */
public AtomicInteger(int initialValue) {
    value = initialValue;
}
 
//返回当前的值
public final int get() {
    return value;
}
//原子更新为新值并返回旧值
public final int getAndSet(int newValue) {
    return unsafe.getAndSetInt(this, valueOffset, newValue);
}
//最终会设置成新值
public final void lazySet(int newValue) {
    unsafe.putOrderedInt(this, valueOffset, newValue);
}
//如果输入的值等于预期值,则以原子方式更新为新值
public final boolean compareAndSet(int expect, int update) {
    return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}


//方法相当于原子性的 ++i
public final int getAndIncrement() {
    //三个参数,1、当前的实例 2、value实例变量的偏移量 3、递增的值。
    return unsafe.getAndAddInt(this, valueOffset, 1);
}
//方法相当于原子性的 --i
public final int getAndDecrement() {
    //三个参数,1、当前的实例 2、value实例变量的偏移量 3、递减的值。
    return unsafe.getAndAddInt(this, valueOffset, -1);
}
二、Unsafe 源码解析

在JDK8中追踪可见sun.misc.Unsafe这个类是无法看见源码的,打开openjdk8源码看 目录:openjdk\jdk\src\share\classes\sun\misc\Unsafe.java

通常我们最好也不要使用Unsafe类,除非有明确的目的,并且也要对它有深入的了解才行。要想使用Unsafe类需要用一些比较tricky的办法。Unsafe类使用了单例模式,需要通过一个静态方法getUnsafe()来获取。但Unsafe类做了限制,如果是普通的调用的话,它会抛出一个SecurityException异常;只有由主类加载器加载的类才能调用这个方法。

 
//获取Unsafe实例静态方法
@CallerSensitive
public static Unsafe getUnsafe() {
    Class caller = Reflection.getCallerClass();
    if (!VM.isSystemDomainLoader(caller.getClassLoader()))
        throw new SecurityException("Unsafe");
    return theUnsafe;
}
    //native硬件级别的原子操作
    //类似的有compareAndSwapInt,compareAndSwapLong,compareAndSwapBoolean,compareAndSwapChar等等。
    public final native boolean compareAndSwapInt(Object o, long offset,int expected,int x);
 
    //内部使用自旋的方式进行CAS更新(while循环进行CAS更新,如果更新失败,则循环再次重试)
    public final int getAndAddInt(Object o, long offset, int delta) {
        int v;
        do {
            //获取对象内存地址偏移量上的数值v
            v = getIntVolatile(o, offset);
            //如果现在还是v,设置为 v + delta,否则返回false,继续循环再次重试.
        } while (!compareAndSwapInt(o, offset, v, v + delta));
        return v;
    }

利用 Unsafe 类的 JNI compareAndSwapInt 方法实现,使用CAS实现一个原子操作更新,compareAndSwapInt 四个参数:1、当前的实例 2、实例变量的内存地址偏移量 3、预期的旧值 4、要更新的值。

到这里 CAS 的实现过程就讲了,CAS的实现离不开处理器的支持。可以发现AtomicInteger原子类的内部几乎是基于前面分析过Unsafe类中的CAS相关操作的方法实现的,这也同时证明AtomicInteger getAndIncrement自增操作实现过程,是基于无锁实现的。

三、CAS导致ABA问题

假设这样一种场景,当第一个线程执行CAS(V,E,U)操作。在获取到当前变量V,准备修改为新值U前,另外两个线程已连续修改了两次变量V的值,使得该值又恢复为旧值,这样的话,我们就无法正确判断这个变量是否已被修改过,如下图:

这就是典型的ABA问题,一般情况这种情况发现的概率比较小,可能发生了也不会造成什么问题,比如说我们对某个做加减法,不关心数字的过程,那么发生ABA问题也没啥关系。但是在某些情况下还是需要防止的,那么该如何解决呢?在Java中解决ABA问题,我们可以使用以下原子类

3.1 AtomicStampedReference类

AtomicStampedReference原子类是一个带有时间戳的对象引用,在每次修改后,AtomicStampedReference不仅会设置新值而且还会记录更改的时间。当AtomicStampedReference设置对象值时,对象值以及时间戳都必须满足期望值才能写入成功,这也就解决了反复读写时,无法预知值是否已被修改的窘境。底层实现为: 通过Pair私有内部类存储数据和时间戳, 并构造volatile修饰的私有实例。接着看 java.util.concurrent.atomic.AtomicStampedReference类的compareAndSet()方法的实现:

private static class Pair {
    final T reference;
    final int stamp;
  
    //最好不要重复的一个数据,决定数据是否能设置成功,时间戳会重复
    private Pair(T reference, int stamp) {
        this.reference = reference;
        this.stamp = stamp;
    }
    static  Pair of(T reference, int stamp) {
        return new Pair(reference, stamp);
    }
}

同时对当前数据和当前时间进行比较,只有两者都相等是才会执行casPair()方法,单从该方法的名称就可知是一个CAS方法,最终调用的还是Unsafe类中的compareAndSwapObject方法到这我们就很清晰AtomicStampedReference的内部实现思想了,通过一个键值对Pair存储数据和时间戳,在更新时对数据和时间戳进行比较,只有两者都符合预期才会调用UnsafecompareAndSwapObject方法执行数值和时间戳替换,也就避免了ABA的问题。

/**
 * 原子更新带有版本号的引用类型。
 * 该类将整数值与引用关联起来,可用于原子的更数据和数据的版本号。
 * 可以解决使用CAS进行原子更新时,可能出现的ABA问题。
 */
public class AtomicStampedReference {
    //静态内部类Pair将对应的引用类型和版本号stamp作为它的成员
    private static class Pair {
      
        //最好不要重复的一个数据,决定数据是否能设置成功,建议时间戳
        final T reference;
        final int stamp;
        private Pair(T reference, int stamp) {
            this.reference = reference;
            this.stamp = stamp;
        }
      
        //根据reference和stamp来生成一个Pair的实例
        static  Pair of(T reference, int stamp) {
            return new Pair(reference, stamp);
        }
    }
  
    //作为一个整体的pair变量被volatile修饰
    private volatile Pair pair;
 
    //构造方法,参数分别是初始引用变量的值和初始版本号
    public AtomicStampedReference(V initialRef, int initialStamp) {
        pair = Pair.of(initialRef, initialStamp);
    }
  
    ....
  
    private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
  
    private static final long pairOffset = objectFieldOffset(UNSAFE, "pair", AtomicStampedReference.class);
 
    //获取pair成员的偏移地址
    static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
                                  String field, Class klazz) {
        try {
            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
        } catch (NoSuchFieldException e) {
            NoSuchFieldError error = new NoSuchFieldError(field);
            error.initCause(e);
            throw error;
        }
    }
}
/**
 * @param 期望(老的)引用
 * @param (新的)引用数据
 * @param 期望(老的)标志stamp(时间戳)值
 * @param (新的)标志stamp(时间戳)值
 * @return 是否成功
 */
public boolean compareAndSet(V expectedReference,V   newReference,int expectedStamp,int newStamp) {
       
    Pair current = pair;
    return
        // 期望(老的)引用 == 当前引用
        expectedReference == current.reference &&
        // 期望(老的)标志stamp(时间戳)值 == 当前标志stamp(时间戳)值
        expectedStamp == current.stamp &&
      
        // (新的)引用数据 == 当前引用数据 并且 (新的)标志stamp(时间戳)值 ==当前标志stamp(时间戳)值
        ((newReference == current.reference && newStamp == current.stamp) ||
          #原子更新值
         casPair(current, Pair.of(newReference, newStamp)));
       
}
 
 //当引用类型的值与期望的一致的时候,原子的更改版本号为新的值。该方法只修改版本号,不修改引用变量的值,成功返回true
public boolean attemptStamp(V expectedReference, int newStamp) {
    Pair current = pair;
    return
        expectedReference == current.reference &&
        (newStamp == current.stamp ||
         casPair(current, Pair.of(expectedReference, newStamp)));
}
 
/**
 * CAS真正实现方法
 */
private boolean casPair(Pair cmp, Pair val) {
        return UNSAFE.compareAndSwapObject(this, pairOffset, cmp, val);
}

期望 Pair cmp(A) == 当前内存存偏移量位置 Pair(V),就更新值 Pair val(B)成功返回true 否则 false。

public static void main(String[] args) {
    AtomicStampedReference num = new AtomicStampedReference(1, 0);
 
    Integer i = num.getReference();
    int stamped = num.getStamp();
 
    if (num.compareAndSet(i, i + 1, stamped, stamped + 1)) {
        System.out.println("测试成功");
    }
}

通过以上原子更新方法,可见 AtomicStampedReference就是利用了Unsafe的CAS方法+Volatile关键字对存储实际的引用变量和int的版本号的Pair实例进行更新。

博文参考 《JDK源码分析》
关注
打赏
1657692713
查看更多评论
立即登录/注册

微信扫码登录

0.0377s