事务就是要保证一组数据库操作,要么全部成功,要么全部失败。在 MySQL 中,事务支持是在引擎层实现的。你现在知道,MySQL 是一个支持多引擎的系统,但并不是所有的引擎都支持事务。比如 MySQL 原生的 MyISAM 引擎就不支持事务,这也是 MyISAM 被 InnoDB 取代的重要原因之一。
一、数据库ACID特性提到事务,那就必要提及ACID(Atomicity、Consistency、Isolation、Durability,即原子性、一致性、隔离性、持久性)
- 原子性:是指事务的原子性操作,对数据的修改要么全部执行成功,要么全部失败,实现事务的原子性,是基于日志的
Redo/Undo
机制。 - 一致性:是指执行事务前后的状态要一致,可以理解为数据一致性。隔离性侧重指事务之间相互隔离,不受影响,这个与事务设置的隔离级别有密切的关系。
- 持久性:是指在一个事务提交后,这个事务的状态会被持久化到数据库中,也就是事务提交,对数据的新增、更新将会持久化到数据库中。
- 隔离性:原子性、隔离性、持久性都是为了保障一致性而存在的,一致性也是最终的目的。
当数据库上有多个事务同时执行的时候,就可能出现脏读(dirty read)、不可重复读(non-repeatable read)、幻读(phantom read)的问题。
脏读:一个事务可以读取另一个未提交事务的数据。需要注意的是这里针对的是数据本身,可以理解为针对单笔数据。事务A开启进行了查询数据,同时事务B开启,修改了其中一笔数据,但并未提交,这时事务A又进行了查询,这时就有两笔不一样的数据,然后事务B并没有结束,事务B进行了事务回滚,这样事务A就读取了事务B修改后未提交的数据。因为这里出现这种根本原因是未对数据进行提交,就进行了读取。需进行读提交(Read Committed)就能解决。
不可重复读:不可重复读:一个事务进行读取,分别读取到了不同的数据。需要注意的是这里针对的是数据本身,可以理解为针对单笔数据,重点是对数据的修改和删除,所以对行加锁就可以解决。
事务A对数据进行查询,这时事物B开启,对其中一笔数据进行了修改,然后进行了提交(这里进行了提交),然后事务A又对数据进行了查询,发现同一笔不同了,所以事务A读取了两笔不同的数据,两次读取同笔数据有了不同的数据。出现这种根本原因是在事务A进行读操作时,其他事务对数据进行了修改。读提交(Read Committed)是不足以解决的,需进行可重复读(Repeatable read)就能解决。
幻读:一个事务进行读取,分别读取到了不同的数据。需要注意的是这里针对的是数据条数,可以理解为针对多笔数据是个数据集,重点是对数据的新增,所以对表加锁就可以解决。
事务A对数据进行查询,这时事物B开启,对其中一笔数据进行了新增,然后进行了提交(这里进行了提交),然后事务A又对数据进行了查询,发现查询所得的结果集是不一样的。幻读针对的是多笔记录。读提交(Read Committed)是不足以解决的,需进行Serializable 序列化就能解决。
三、事务的隔离级别你首先要知道,你隔离得越严实,效率就会越低。因此很多时候,我们都要在二者之间寻找一个平衡点。SQL 标准的事务隔离级别包括:读未提交(read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(serializable )。
- 读未提交是指,一个事务还没提交时,它做的变更就能被别的事务看到。
- 读已提交是指,一个事务提交之后,它做的变更才会被其他事务看到。
- 可重复读是指,一个事务执行过程中看到的数据,总是跟这个事务在启动时看到的数据是一致的。当然在可重复读隔离级别下,未提交变更对其他事务也是不可见的。
- 串行化,顾名思义是对于同一行记录,“写”会加“写锁”,“读”会加“读锁”。当出现读写锁冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行。
假设数据表 T 中只有一列,其中一行的值为 1,下面是按照时间顺序执行两个事务的行为。
mysql> create table T(c int) engine=InnoDB;
insert into T(c) values(1);
我们来看看在不同的隔离级别下,事务A会有哪些不同的返回结果,也就是图里面 V1、V2、V3 的返回值分别是什么。
- 若隔离级别是“读未提交”, 则V1的值就是 2。这时候事务B虽然还没有提交,但是结果已经被 A 看到了。因此V2、V3也都是 2。
- 若隔离级别是“读提交”,则 V1 是 1,V2 的值是 2。事务 B 的更新在提交后才能被 A 看到。所以, V3 的值也是 2。
- 若隔离级别是“可重复读”,则 V1、V2 是1,V3是2。之所以V2还是 1,遵循的就是这个要求:事务在执行期间看到的数据前后必须是一致的。
- 若隔离级别是“串行化”,则在事务 B 执行“将 1 改成 2”的时候,会被锁住。直到事务 A 提交后,事务 B 才可以继续执行。所以从 A 的角度看, V1、V2 值是 1,V3 的值是 2。
在实现上,数据库里面会创建一个视图,访问的时候以视图的逻辑结果为准。在“可重复读”隔离级别下,这个视图是在事务启动时创建的,整个事务存在期间都用这个视图。在“读提交”隔离级别下,这个视图是在每个 SQL 语句开始执行的时候创建的。这里需要注意的是,“读未提交”隔离级别下直接返回记录上的最新值,没有视图概念;而“串行化”隔离级别下直接用加锁的方式来避免并行访问。
我们可以看到在不同的隔离级别下,数据库行为是有所不同的。Oracle 数据库的默认隔离级别其实就是“读提交”,因此对于一些从 Oracle 迁移到 MySQL 的应用,为保证数据库隔离级别的一致,你一定要记得将 MySQL 的隔离级别设置为“读提交”。因为mysql的默认级别设置为可重复读的隔离级别。配置的方式是,将启动参数 transaction-isolation 的值设置成 READ-COMMITTED。你可以用 show variables 来查看当前的值。
show variables like 'transaction_isolation';
那什么时候需要“可重复读”的场景呢?
假设你在管理一个个人银行账户表。一个表存了每个月月底的余额,一个表存了账单明细。这时候你要做数据校对,也就是判断上个月的余额和当前余额的差额,是否与本月的账单明细一致。你一定希望在校对过程中,即使有用户发生了一笔新的交易,也不影响你的校对结果。这时候使用“可重复读”隔离级别就很方便。事务启动时的视图可以认为是静态的,不受其他事务更新的影响。
四、事务隔离实现原理 4.1 MVCC实现原理InnoDB在实现MVCC时用到的一致性读视图,用于支持RC(Read Committed,读提交)和 RR(Repeatable Read,可重复读)隔离级别的实现。在MySQL中,实际上每条记录在更新的时候都会同时记录一条回滚操作。记录上的最新值,通过回滚操作,都可以得到前一个状态的值。InnoDB利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力。
假设一个值从 1 被按顺序改成了 2、3、4,在回滚日志里面就会有类似下面的记录。
当前值是4,但是在查询这条记录的时候,不同时刻启动的事务会有不同的read-view。如图中看到的,在视图 A、B、C 里面,这一个记录的值分别是 1、2、4,同一条记录在系统中可以存在多个版本,就是数据库的多版本并发控制(MVCC)。对于 read-view A,要得到1,就必须将当前值依次执行图中所有的回滚操作得到。同时你会发现,即使现在有另外一个事务正在将 4 改成 5,这个事务跟 read-view A、B、C 对应的事务是不会冲突的。在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的。
InnoDB 里面每个事务有一个唯一的事务 ID,叫作 transaction id。它是在事务开始的时候向InnoDB 的事务系统申请的,是按申请顺序严格递增的。而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把 transaction id 赋值给这个数据版本的事务 ID,记为 row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。数据表中的一行记录,其实可能有多个版本 (row),每个版本有自己的 row trx_id。
图中虚线框里是同一行数据的 4 个版本,当前最新版本是 V4,k 的值是 22,它是被 transaction id 为 25 的事务更新的,因此它的 row trx_id 也是 25。
图中的三个虚线箭头,就是undo log;而 V1、V2、V3 并不是物理上真实存在的,而是每次需要的时候根据当前版本和undo log 计算出来的。比如,需要V2的时候,就是通过V4依次执行U3、U2 算出来。明白了多版本和row trx_id的概念后,我们再来想一下,InnoDB 是怎么定义那个“100G”的快照的。
按照可重复读的定义,一个事务启动的时候,能够看到所有已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见。因此,一个事务只需要在启动的时候声明说,“以我启动的时刻为准,如果一个数据版本是在我启动之前生成的,就认;如果是我启动以后才生成的,我就不认,我必须要找到它的上一个版本”。
当然,如果“上一个版本”也不可见,那就得继续往前找。还有,如果是这个事务自己更新的数据,它自己还是要认的。在实现上, InnoDB 为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务 ID。“活跃”指的就是,启动了但还没提交。数组里面事务 ID 的最小值记为低水位,当前系统里面已经创建过的事务 ID 的最大值加 1 记为高水位。这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。而数据版本的可见性规则,就是基于数据的 row trx_id 和这个一致性视图的对比结果得到的。这个视图数组把所有的 row trx_id 分成了几种不同的情况。
这样,对于当前事务的启动瞬间来说,一个数据版本的 row trx_id,有以下几种可能:
- 如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;
- 如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
- 如果落在黄色部分,那就包括两种情况 a. 若 row trx_id 在数组中,表示这个版本是由还没提交的事务生成的,不可见; b. 若 row trx_id 不在数组中,表示这个版本是已经提交了的事务生成的,可见。
InnoDB 的行数据有多个版本,每个数据版本有自己的 row trx_id,每个事务或者语句有自己的一致性视图。普通查询语句是一致性读,一致性读会根据 row trx_id 和一致性视图确定数据版本的可见性。
- 对于可重复读,查询只承认在事务启动前就已经提交完成的数据;
- 对于读提交,查询只承认在语句启动前就已经提交完成的数据;
回滚日志总不能一直保留吧,什么时候删除呢?
回滚日志在不需要的时候才删除。系统会判断,当没有事务再需要用到这些回滚日志时,回滚日志会被删除。就是当系统里没有比这个回滚日志更早的read-view 的时候。
为什么建议你尽量不要使用长事务。
长事务意味着系统里面会存在很老的事务视图。由于这些事务随时可能访问数据库里面的任何数据,所以这个事务提交之前,数据库里面它可能用到的回滚记录都必须保留,这就会导致大量占用存储空间。在 MySQL 5.5 及以前的版本,回滚日志是跟数据字典一起放在 ibdata 文件里的,即使长事务最终提交,回滚段被清理,文件也不会变小。我见过数据只有 20GB,而回滚段有 200GB 的库。最终只好为了清理回滚段,重建整个库。除了对回滚段的影响,长事务占用锁资源,可能拖垮整个库。
五、事务的启动方式长事务有这些潜在风险,我当然是建议你尽量避免。其实很多时候业务开发同学并不是有意使用长事务,通常是由于误用所致。MySQL 的事务启动方式有以下几种:
- 显式启动事务语句, begin或 start transaction。配套的提交语句是 commit,回滚语句是 rollback。
- set autocommit=0,这个命令会将这个线程的自动提交关掉。意味着如果你只执行一个 select 语句,这个事务就启动了,而且并不会自动提交。这个事务持续存在直到你主动执行 commit 或 rollback 语句,或者断开连接。
有些客户端连接框架会默认连接成功后先执行一个 set autocommit=0 的命令。这就导致接下来的查询都在事务中,如果是长连接,就导致了意外的长事务。因此,我会建议你总是使用 set autocommit=1, 通过显式语句的方式来启动事务。
但是有的开发同学会纠结“多一次交互”的问题。对于一个需要频繁使用事务的业务,第二种方式每个事务在开始时都不需要主动执行一次 “begin”,减少了语句的交互次数。如果你也有这个顾虑,我建议你使用 commit work and chain 语法。
在 autocommit 为 1 的情况下,用 begin 显式启动的事务,如果执行 commit 则提交事务。如果执行 commit work and chain,则是提交事务并自动启动下一个事务,这样也省去了再次执行 begin 语句的开销。同时带来的好处是从程序开发的角度明确地知道每个语句是否处于事务中。你可以在 information_schema 库的 innodb_trx 这个表中查询长事务,比如下面这个语句,用于查找持续时间超过 60s 的事务。
select * from information_schema.innodb_trx where TIME_TO_SEC(timediff(now(),trx_started))>60
六、幻读原理与解决方案
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
`d` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `c` (`c`)
) ENGINE=InnoDB;
insert into t values(0,0,0),(5,5,5),
(10,10,10),(15,15,15),(20,20,20),(25,25,25);
这个表除了主键 id 外,还有一个索引 c,初始化语句在表中插入了 6 行数据。
begin;
select * from t where d=5 for update;
commit;
上面的语句序列,是怎么加锁的,加的锁又是什么时候释放的呢?这个语句会命中 d=5 的这一行,对应的主键 id=5,因此在 select 语句执行完成后,id=5 这一行会加一个写锁,而且由于两阶段锁协议,这个写锁会在执行commit 语句的时候释放。由于字段 d 上没有索引,因此这条查询语句会做全表扫描。那么,其他被扫描到的,但是不满足条件的 5 行记录上,会不会被加锁呢?InnoDB 的默认事务隔离级别是可重复读。接下来没有特殊说明的部分,都是设定在可重复读隔离级别下。
6.1 幻读是什么如果只在 id=5 这一行加锁,而其他行的不加锁的话,会怎么样?
可以看到,session A里执行了三次查询,分别是 Q1、Q2 和 Q3。它们的SQL 语句相同,都是 select * from t where d=5 for update。这个语句的意思你应该很清楚了,查所有 d=5 的行,而且使用的是当前读,并且加上写锁。现在,我们来看一下这三条 SQL 语句,分别会返回什么结果。
- Q1 只返回 id=5 这一行;
- 在 T2 时刻,session B 把 id=0 这一行的 d 值改成了 5,因此 T3 时刻 Q2 查出来的是 id=0 和 id=5 这两行;
- 在 T4 时刻,session C 又插入一行(1,1,5),因此 T5 时刻 Q3 查出来的是 id=0、id=1 和 id=5 的这三行。
其中,Q3 读到 id=1 这一行的现象,被称为“幻读”。也就是说,幻读指的是一个事务在前后两次查询同一个范围的时候,后一次查询看到了前一次查询没有看到的行。
- 在可重复读隔离级别下,普通的查询是快照读,是不会看到别的事务插入的数据的。因此,幻读在“当前读”下才会出现。
- 上面 session B 的修改结果,被 session A 之后的 select 语句用“当前读”看到,不能称为幻读。幻读仅专指“新插入的行”。
因为这三个查询都是加了 for update,都是当前读。而当前读的规则,就是要能读到所有已经提交的记录的最新值。并且,session B 和 sessionC 的两条语句,执行后就会提交,所以 Q2 和 Q3 就是应该看到这两个事务的操作效果,而且也看到了,这跟事务的可见性规则并不矛盾。
6.2 幻读导致的问题session A 在 T1 时刻就声明了,“我要把所有 d=5 的行锁住,不准别的事务进行读写操作”。而实际上,这个语义被破坏了。如果现在这样看感觉还不明显的话,我再往 session B 和 session C 里面分别加一条 SQL 语句,你再看看会出现什么现象。
session B 的第二条语句 update t set c=5 where id=0,语义是“我把 id=0、d=5 这一行的 c 值,改成了 5”。由于在 T1 时刻,session A 还只是给 id=5 这一行加了行锁, 并没有给 id=0 这行加上锁。因此,session B 在 T2 时刻,是可以执行这两条 update 语句的。这样,就破坏了 session A 里 Q1 语句要锁住所有 d=5 的行的加锁声明。session C 也是一样的道理,对 id=1 这一行的修改,也是破坏了 Q1 的加锁声明。
幻读导致数据一致性的问题。锁的设计是为了保证数据的一致性。而这个一致性,不止是数据库内部数据状态在此刻的一致性,还包含了数据和日志在逻辑上的一致性。为了说明这个问题,我给 session A 在 T1 时刻再加一个更新语句,即:update t set d=100 where d=5。
update 的加锁语义和 select …for update 是一致的,所以这时候加上这条 update 语句也很合理。session A 声明说“要给 d=5 的语句加上锁”,就是为了要更新数据,新加的这条 update 语句就是把它认为加上了锁的这一行的 d 值修改成了 100。
现在,我们来分析一下图 3 执行完成后,数据库里会是什么结果。
- 经过 T1 时刻,id=5 这一行变成 (5,5,100),当然这个结果最终是在 T6 时刻正式提交的 ;
- 经过 T2 时刻,id=0 这一行变成 (0,5,5);
- 经过 T4 时刻,表里面多了一行 (1,5,5);
- 其他行跟这个执行序列无关,保持不变。
这样看,这些数据也没啥问题,但是我们再来看看这时候 binlog 里面的内容。
- T2 时刻,session B 事务提交,写入了两条语句;
- T4 时刻,session C 事务提交,写入了两条语句;
- T6 时刻,session A 事务提交,写入了 update t set d=100 where d=5 这条语句。
update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/
insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/
update t set d=100 where d=5;/* 所有 d=5 的行,d 改成 100*/
好,你应该看出问题了。这个语句序列,不论是拿到备库去执行,还是以后用 binlog 来克隆一个库,这三行的结果,都变成了 (0,5,100)、(1,5,100) 和 (5,5,100)。也就是说,id=0 和 id=1 这两行,发生了数据不一致。这个问题很严重,是不行的。
这个数据不一致到底是怎么引入的?我们分析一下可以知道,这是我们假设“select * from t where d=5 for update 这条语句只给 d=5 这一行,也就是 id=5 的这一行加锁”导致的。所以我们认为,上面的设定不合理,要改。那怎么改呢?我们把扫描过程中碰到的行,也都加上写锁,再来看看执行效果。
由于session A 把所有的行都加了写锁,所以session B 在执行第一个 update 语句的时候就被锁住了。需要等到 T6 时刻 session A 提交以后,session B 才能继续执行。这样对于 id=0 这一行,在数据库里的最终结果还是 (0,5,5)。在 binlog 里面,执行序列是这样的:
insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/
update t set d=100 where d=5;/* 所有 d=5 的行,d 改成 100*/
update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/
可以看到,按照日志顺序执行,id=0 这一行的最终结果也是 (0,5,5)。所以,id=0 这一行的问题解决了。但同时你也可以看到,id=1 这一行,在数据库里面的结果是 (1,5,5),而根据 binlog 的执行结果是 (1,5,100),也就是说幻读的问题还是没有解决。为什么我们已经这么“凶残”地,把所有的记录都上了锁,还是阻止不了 id=1 这一行的插入和更新呢?原因很简单。在 T3 时刻,我们给所有行加锁的时候,id=1 这一行还不存在,不存在也就加不上锁。
6.3 幻读解决方案现在你知道了,产生幻读的原因是,行锁只能锁住行,但是新插入记录这个动作,要更新的是记录之间的“间隙”。因此,为了解决幻读问题,InnoDB 只好引入新的锁,也就是间隙锁 (Gap Lock)。间隙锁,锁的就是两个值之间的空隙。比如文章开头的表 t,初始化插入了 6 个记录,这就产生了 7 个间隙。
这样,当你执行 select * from t where d=5 for update 的时候,就不止是给数据库中已有的 6 个记录加上了行锁,还同时加了 7 个间隙锁。这样就确保了无法再插入新的记录。也就是说这时候,在一行行扫描的过程中,不仅将给行加上了行锁,还给行两边的空隙,也加上了间隙锁。现在你知道了,数据行是可以加上锁的实体,数据行之间的间隙,也是可以加上锁的实体。但是间隙锁跟我们之前碰到过的锁都不太一样。比如行锁,分成读锁和写锁。下图就是这两种类型行锁的冲突关系。
也就是说,跟行锁有冲突关系的是“另外一个行锁”。但是间隙锁不一样,跟间隙锁存在冲突关系的,是“往这个间隙中插入一个记录”这个操作。间隙锁之间都不存在冲突关系。
这里session B 并不会被堵住。因为表 t 里并没有 c=7 这个记录,因此 session A 加的是间隙锁 (5,10)。而 session B 也是在这个间隙加的间隙锁。它们有共同的目标,即:保护这个间隙,不允许插入值。但,它们之间是不冲突的。
间隙锁和行锁合称 next-key lock,每个 next-key lock 是前开后闭区间。也就是说,我们的表 t 初始化以后,如果用 select * from t for update 要把整个表所有记录锁起来,就形成了 7 个 next-key lock,分别是 (-∞,0]、(0,5]、(5,10]、(10,15]、(15,20]、(20, 25]、(25, +supremum]。这是因为 +∞是开区间。实现上,InnoDB 给每个索引加了一个不存在的最大值 supremum,这样才符合我们前面说的“都是前开后闭区间”。
间隙锁和 next-key lock 的引入,帮我们解决了幻读的问题,但同时也带来了一些“困扰”。对应到我们这个例子的表来说,业务逻辑这样的:任意锁住一行,如果这一行不存在的话就插入,如果存在这一行就更新它的数据,代码如下:
begin;
select * from t where id=N for update;
/* 如果行不存在 */
insert into t values(N,N,N);
/* 如果行存在 */
update t set d=N set id=N;
commit;
可能你会说,这个不是 insert … on duplicate key update 就能解决吗?但其实在有多个唯一键的时候,这个方法是不能满足这位提问同学的需求的。
这个同学碰到的现象是,这个逻辑一旦有并发,就会碰到死锁。你一定也觉得奇怪,这个逻辑每次操作前用 for update锁起来,已经是最严格的模式了,怎么还会有死锁呢?这里,我用两个 session 来模拟并发,并假设 N=9。
你看到了,其实都不需要用到后面的update 语句,就已经形成死锁了。我们按语句执行顺序来分析一下:
- session A 执行 select … for update 语句,由于 id=9 这一行并不存在,因此会加上间隙锁 (5,10);
- session B 执行 select … for update 语句,同样会加上间隙锁 (5,10),间隙锁之间不会冲突,因此这个语句可以执行成功;
- session B 试图插入一行 (9,9,9),被 session A 的间隙锁挡住了,只好进入等待;
- session A 试图插入一行 (9,9,9),被 session B 的间隙锁挡住了。
至此,两个session 进入互相等待状态,形成死锁。当然,InnoDB 的死锁检测马上就发现了这对死锁关系,让 session A 的 insert 语句报错返回了。间隙锁的引入,可能会导致同样的语句锁住更大的范围,这其实是影响了并发度的。
今天和你分析的问题都是在可重复读隔离级别下的,间隙锁是在可重复读隔离级别下才会生效的。所以,你如果把隔离级别设置为读提交的话,就没有间隙锁了。但同时,你要解决可能出现的数据和日志不一致问题,需要把 binlog 格式设置为 row。这,也是现在不少公司使用的配置组合。如果读提交隔离级别够用,也就是说,业务不需要可重复读的保证,这样考虑到读提交下操作数据的锁范围更小(没有间隙锁),这个选择是合理的。
七、数据库常见死锁原因及处理数据库是一个多用户使用的共享资源,当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性。加锁是实现数据库并发控制的一个非常重要的技术。在实际应用中经常会遇到的与锁相关的异常情况,当两个事务需要一组有冲突的锁,而不能将事务继续下去的话,就会出现死锁,严重影响应用的正常执行。在数据库中有两种基本的锁类型:排它锁(Exclusive Locks,即X锁)和共享锁(Share Locks,即S锁)。当数据对象被加上排它锁时,其他的事务不能对它读取和修改。加了共享锁的数据对象可以被其他事务读取,但不能修改。数据库利用这两种基本的锁类型来对数据库的事务进行并发控制。
7.1 表死锁问题死锁场景:一个用户A 访问表A(锁住了表A),然后又访问表B;另一个用户B 访问表B(锁住了表B),然后企图访问表A;这时用户A由于用户B已经锁住表B,它必须等待用户B释放表B才能继续,同样用户B要等用户A释放表A才能继续,这就死锁就产生了。
解决方案:这种死锁比较常见,是由于程序的BUG产生的,除了调整的程序的逻辑没有其它的办法。仔细分析程序的逻辑,对于数据库的多表操作时,尽量避免同时锁定两个资源,如必须同时锁定两个资源时,要保证在任何时刻都应该按照相同的顺序来锁定资源。(如操作A和B两张表时,总是按先A后B的顺序处理。)
7.2 行锁死锁死锁场景:两个事务分别想拿到对方持有的锁,互相等待,于是产生死锁。
解决方案:在同一个事务中,尽可能做到一次锁定所需要的所有资源;按照 id 对资源排序,然后按顺序进行处理。
死锁场景:事务A 查询一条纪录,然后更新该条纪录;此时事务B 也更新该条纪录,这时事务B 的排他锁由于事务A 有共享锁,必须等A 释放共享锁后才可以获取,只能排队等待。事务A 再执行更新操作时,此处发生死锁,因为事务A 需要排他锁来做更新操作。但是,无法授予该锁请求,因为事务B 已经有一个排他锁请求,并且正在等待事务A 释放其共享锁。
事务A
----------------------------------------------------------------------
-- 共享锁,1
select * from dept where deptno=1 lock in share mode;
-- 排他锁,3
update dept set dname='java' where deptno=1;
----------------------------------------------------------------------
事务B
----------------------------------------------------------------------
-- 由于1有共享锁,没法获取排他锁,需等待,2
update dept set dname='Java' where deptno=1;
----------------------------------------------------------------------
解决方案:使用乐观锁进行控制。乐观锁机制避免了长事务中的数据库加锁开销,大大提升了大并发量下的系统性能。需要注意的是,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户更新操作不受我们系统的控制,因此可能会造成脏数据被更新到数据库中。
7.3 insert语句的死锁死锁场景:insert … on duplicate key 在执行时,innodb引擎会先判断插入的行是否产生重复key错误,如果存在,在对该现有的行加上S(共享锁)锁,如果返回该行数据给mysql,然后mysql执行完duplicate后的update操作,然后对该记录加上X(排他锁),最后进行update写入。
解决方案:尽量不对存在多个唯一键的table使用该语句
博文参考《极客时间数据库实战》