在leetcode上经常遇见有关于岛屿问题的一系列问题。比如:
- L200. 岛屿数量 (Easy)
- 463. 岛屿的周长 (Easy)
- 695. 岛屿的最大面积 (Medium)
- 827. 最大人工岛 (Hard)
我们所熟悉的 DFS(深度优先搜索)问题通常是在树或者图结构上进行的。利用DFS算法来能够很好的理解和解决该类算法问题。岛屿问题是这类网格 DFS 问题的典型代表。网格结构遍历起来要比二叉树复杂一些,如果没有掌握一定的方法,DFS 代码容易写得冗长繁杂。本文将以岛屿问题为例,展示网格类问题 DFS 通用思路,以及如何让代码变得简洁。
一、网格类问题的 DFS 遍历方法网格问题的基本概念:我们首先明确一下岛屿问题中的网格结构是如何定义的,以方便我们后面的讨论。
网格问题是由 m×n 个小方格组成一个网格,每个小方格与其上下左右四个方格认为是相邻的,要在这样的网格上进行某种搜索。岛屿问题是一类典型的网格问题。每个格子中的数字可能是 0 或者 1。我们把数字为 0 的格子看成海洋格子,数字为 1 的格子看成陆地格子,这样相邻的陆地格子就连接成一个岛屿。
在这样一个设定下,就出现了各种岛屿问题的变种,包括岛屿的数量、面积、周长等。不过这些问题,基本都可以用 DFS 遍历来解决
DFS 的基本结构
网格结构要比二叉树结构稍微复杂一些,它其实是一种简化版的图结构。要写好网格上的 DFS 遍历,我们首先要理解二叉树上的 DFS 遍历方法,再类比写出网格结构上的 DFS 遍历。我们写的二叉树 DFS 遍历一般是这样的:
## 深度搜索函数
void traverse(TreeNode root) {
// 判断 base case
if (root == null) {
return;
}
// 访问两个相邻结点:左子结点、右子结点
traverse(root.left);
traverse(root.right);
}
可以看到,二叉树的 DFS 有两个要素:「访问相邻结点」和「判断 base case」。
第一个要素是访问相邻结点。二叉树的相邻结点非常简单,只有左子结点和右子结点两个。二叉树本身就是一个递归定义的结构:一棵二叉树,它的左子树和右子树也是一棵二叉树。那么我们的 DFS 遍历只需要递归调用左子树和右子树即可。
第二个要素是 判断 base case。一般来说,二叉树遍历的 base case 是 root == null。这样一个条件判断其实有两个含义:一方面,这表示 root 指向的子树为空,不需要再往下遍历了。另一方面,在 root == null 的时候及时返回,可以让后面的 root.left 和 root.right 操作不会出现空指针异常。对于网格上的 DFS,我们完全可以参考二叉树的 DFS,写出网格 DFS 的两个要素:
首先,网格结构中的格子有多少相邻结点?答案是上下左右四个。对于格子 (r, c) 来说(r 和 c 分别代表行坐标和列坐标),四个相邻的格子分别是 (r-1, c)、(r+1, c)、(r, c-1)、(r, c+1)。换句话说,网格结构是「四叉」的。
其次,网格 DFS 中的 base case 是什么?从二叉树的 base case 对应过来,应该是网格中不需要继续遍历、grid[r][c] 会出现数组下标越界异常的格子,也就是那些超出网格范围的格子。
这一点稍微有些反直觉,坐标竟然可以临时超出网格的范围?这种方法我称为「先污染后治理」—— 甭管当前是在哪个格子,先往四个方向走一步再说,如果发现走出了网格范围再赶紧返回。这跟二叉树的遍历方法是一样的,先递归调用,发现 root == null 再返回。
void dfs(int[][] grid, int r, int c) {
// 判断 base case
// 如果坐标 (r, c) 超出了网格范围,直接返回
if (!inArea(grid, r, c)) {
return;
}
// 访问上、下、左、右四个相邻结点
dfs(grid, r - 1, c);
dfs(grid, r + 1, c);
dfs(grid, r, c - 1);
dfs(grid, r, c + 1);
}
// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {
return 0 = m || grid[tx][ty] == 0) {
// 表示的超过的范围的和水的都是需要计算
cnt += 1;
}
}
ans += cnt;
}
}
}
return ans;
}
public int islandPerimeterV2(int[][] grid) {
int n = grid.length;
int m = grid[0].length;
int ans = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
if (grid[i][j] == 1) {
ans += dfs(i, j, grid, n, m);
}
}
}
return ans;
}
private int dfs(int x, int y, int[][] grid, int n, int m) {
// 表示的超过的范围的和水的都是需要计算
if (x < 0 || x >= n || y < 0 || y >= m || grid[x][y] == 0) {
return 1;
}
//表示的访问过了
if (grid[x][y] == 2) {
return 0;
}
// 赋值为2表示已经访问
grid[x][y] = 2;
// 重新开始的计算结果
int res = 0;
for (int i = 0; i < 4; ++i) {
int tx = x + dx[i];
int ty = y + dy[i];
res += dfs(tx, ty, grid, n, m);
}
// 返回当前的一个结果的
return res;
}
}
博文参考
力扣