枚举类型是Java 5中新增特性的一部分,它是一种特殊的数据类型,之所以特殊是因为它既是一种类(class)类型却又比类类型多了些特殊的约束,但是这些约束的存在也造就了枚举类型的简洁性、安全性以及便捷性。类的对象只有有限个确定的。当需要定义一组常量时,强烈建议使用枚举头
星期:Monday(星期一)、......、Sunday(星期天)。
性别: Man(男)、Woman(女)。
季节:Spring(春节)...... Winter(冬天)。
支付方式:Cash(现金)、WeChatPay(微信)、Alipay(支付宝)、BankCard(银行卡)、CreditCard(信用卡)。
就职状态:Busy、Free、Vocation、Dimission。
订单状态: Nonpayment(未付款)、Paid(已付款)、Fulfilled(已配货)、Delivered(已发货)、Return(退货)、Checked(已确认)。
线程状态:创建、就绪、运行、阻塞、死亡。
一、枚举类的定义
普通的数据类型的定义
public class Day {
public static final int MONDAY =1;
public static final int TUESDAY=2;
public static final int WEDNESDAY=3;
public static final int THURSDAY=4;
public static final int FRIDAY=5;
public static final int SATURDAY=6;
public static final int SUNDAY=7;
}
上述的常量定义常量的方式称为int枚举模式,这样的定义方式并没有什么错,但它存在许多不足,如在类型安全和使用方便性上并没有多少好处,如果存在定义int值相同的变量,混淆的几率还是很大的,编译器也不会提出任何警告,因此这种方式在枚举出现后并不提倡,现在我们利用枚举类型来重新定义上述的常量,同时也感受一把枚举定义的方式,如下定义周一到周日的常量
//枚举类型,使用关键字enum
enum Day {
MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, SUNDAY
}
相当简洁,在定义枚举类型时我们使用的关键字是enum,与class关键字类似,只不过前者是定义枚举类型,后者是定义类类型。枚举类型Day中分别定义了从周一到周日的值,这里要注意,值一般是大写的字母,多个值之间以逗号分隔。同时我们应该知道的是枚举类型可以像类(class)类型一样,定义为一个单独的文件,当然也可以定义在其他类内部,更重要的是枚举常量在类型安全性和便捷性都很有保证,如果出现类型问题编译器也会提示我们改进,但务必记住枚举表示的类型其取值是必须有限的,也就是说每个值都是可以枚举出来的。
//定义枚举类型
enum Day {
MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, SUNDAY
}
public class EnumDemo {
public static void main(String[] args){
//直接引用
Day day =Day.MONDAY;
}
}
二、枚举的类的原理
枚举类的原理实际上在使用关键字enum创建枚举类型并编译后,编译器会为我们生成一个相关的类,这个类继承了Java API中的java.lang.Enum类,也就是说通过关键字enum创建枚举类型在编译后事实上也是一个类类型而且该类继承自java.lang.Enum类。下面我们编译前面定义的EnumDemo.java并查看生成的class文件来验证这个结论:
//查看目录下的java文件
xjln@xjl $ ls
EnumDemo.java
//利用javac命令编译EnumDemo.java
xjln@xjl $ javac EnumDemo.java
//查看生成的class文件,注意有Day.class和EnumDemo.class 两个
xjln@xjl $ ls
Day.class EnumDemo.class EnumDemo.java
利用javac编译前面定义的EnumDemo.java文件后分别生成了Day.class和EnumDemo.class文件,而Day.class就是枚举类型,这也就验证前面所说的使用关键字enum定义枚举类型并编译后,编译器会自动帮助我们生成一个与枚举相关的类。我们再来看看反编译Day.class文件:
//反编译Day.class
final class Day extends Enum
{
//编译器为我们添加的静态的values()方法
public static Day[] values()
{
return (Day[])$VALUES.clone();
}
//编译器为我们添加的静态的valueOf()方法,注意间接调用了Enum也类的valueOf方法
public static Day valueOf(String s)
{
return (Day)Enum.valueOf(com/zejian/enumdemo/Day, s);
}
//私有构造函数
private Day(String s, int i)
{
super(s, i);
}
//前面定义的7种枚举实例
public static final Day MONDAY;
public static final Day TUESDAY;
public static final Day WEDNESDAY;
public static final Day THURSDAY;
public static final Day FRIDAY;
public static final Day SATURDAY;
public static final Day SUNDAY;
private static final Day $VALUES[];
static
{
//实例化枚举实例
MONDAY = new Day("MONDAY", 0);
TUESDAY = new Day("TUESDAY", 1);
WEDNESDAY = new Day("WEDNESDAY", 2);
THURSDAY = new Day("THURSDAY", 3);
FRIDAY = new Day("FRIDAY", 4);
SATURDAY = new Day("SATURDAY", 5);
SUNDAY = new Day("SUNDAY", 6);
$VALUES = (new Day[] {
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY
});
}
}
从反编译的代码可以看出编译器确实帮助我们生成了一个Day类(注意该类是final类型的,将无法被继承)而且该类继承自java.lang.Enum类,该类是一个抽象类(稍后我们会分析该类中的主要方法),除此之外,编译器还帮助我们生成了7个Day类型的实例对象分别对应枚举中定义的7个日期,这也充分说明了我们前面使用关键字enum定义的Day类型中的每种日期枚举常量也是实实在在的Day实例对象,只不过代表的内容不一样而已。注意编译器还为我们生成了两个静态方法,分别是values()和 valueOf(),稍后会分析它们的用法,到此我们也就明白了,使用关键字enum定义的枚举类型,在编译期后,也将转换成为一个实实在在的类,而在该类中,会存在每个在枚举类型中定义好变量的对应实例对象,如上述的MONDAY枚举类型对应public static final Day MONDAY;,同时编译器会为该类创建两个方法,分别是values()和valueOf()。
三、enum枚举类的方法- values()方法:返回枚举类型的对象数组。该方法可以很方便地遍历所有的枚举值。
- valulof(string str):可以把一个字符串转为对应的枚举类对象。要求字符串必须是枚举类对像
- tostring():返回当前枚举类对象常量的名称。
单例模式可以说是最常使用的设计模式了,它的作用是确保某个类只有一个实例,自行实例化并向整个系统提供这个实例。在实际应用中,线程池、缓存、日志对象、对话框对象常被设计成单例,总之,选择单例模式就是为了避免不一致状态,下面我们将会简单说明单例模式的几种主要编写方式,从而对比出使用枚举实现单例模式的优点。首先看看饿汉式的单例模式:
/**
*饿汉式的单例模式
*/
public class SingletonHungry {
private static SingletonHungry instance = new SingletonHungry();
private SingletonHungry() {
}
public static SingletonHungry getInstance() {
return instance;
}
}
显然这种写法比较简单,但问题是无法做到延迟创建对象,事实上如果该单例类涉及资源较多,创建比较耗时间时,我们更希望它可以尽可能地延迟加载,从而减小初始化的负载,于是便有了如下的懒汉式单例:
/**
*
* 懒汉式单例模式(适合多线程安全)
*/
public class SingletonLazy {
private static volatile SingletonLazy instance;
private SingletonLazy() {
}
public static synchronized SingletonLazy getInstance() {
if (instance == null) {
instance = new SingletonLazy();
}
return instance;
}
}
这种写法能够在多线程中很好的工作避免同步问题,同时也具备lazy loading机制,遗憾的是,由于synchronized的存在,效率很低,在单线程的情景下,完全可以去掉synchronized,为了兼顾效率与性能问题,改进后代码如下:
public class Singleton {
private static volatile Singleton singleton = null;
private Singleton(){}
public static Singleton getSingleton(){
if(singleton == null){
synchronized (Singleton.class){
if(singleton == null){
singleton = new Singleton();
}
}
}
return singleton;
}
}
这种编写方式被称为“双重检查锁”,主要在getSingleton()方法中,进行两次null检查。这样可以极大提升并发度,进而提升性能。毕竟在单例中new的情况非常少,绝大多数都是可以并行的读操作,因此在加锁前多进行一次null检查就可以减少绝大多数的加锁操作,也就提高了执行效率。但是必须注意的是volatile关键字,该关键字有两层语义。第一层语义是可见性,可见性是指在一个线程中对该变量的修改会马上由工作内存(Work Memory)写回主内存(Main Memory),所以其它线程会马上读取到已修改的值,关于工作内存和主内存可简单理解为高速缓存(直接与CPU打交道)和主存(日常所说的内存条),注意工作内存是线程独享的,主存是线程共享的。volatile的第二层语义是禁止指令重排序优化,我们写的代码(特别是多线程代码),由于编译器优化,在实际执行的时候可能与我们编写的顺序不同。编译器只保证程序执行结果与源代码相同,却不保证实际指令的顺序与源代码相同,这在单线程并没什么问题,然而一旦引入多线程环境,这种乱序就可能导致严重问题。volatile关键字就可以从语义上解决这个问题,值得关注的是volatile的禁止指令重排序优化功能在Java 1.5后才得以实现,因此1.5前的版本仍然是不安全的,即使使用了volatile关键字。或许我们可以利用静态内部类来实现更安全的机制,静态内部类单例模式如下:
/**
* 静态内部类
*/
public class SingletonInner {
private static class Holder {
private static SingletonInner singleton = new SingletonInner();
}
private SingletonInner(){}
public static SingletonInner getSingleton(){
return Holder.singleton;
}
}
正如上述代码所展示的,我们把Singleton实例放到一个静态内部类中,这样可以避免了静态实例在Singleton类的加载阶段(类加载过程的其中一个阶段的,此时只创建了Class对象就创建对象,毕竟静态变量初始化是在SingletonInner类初始化时触发的,并且由于静态内部类只会被加载一次,所以这种写法也是线程安全的。从上述4种单例模式的写法中,似乎也解决了效率与懒加载的问题,但是它们都有两个共同的缺点:
序列化可能会破坏单例模式,比较每次反序列化一个序列化的对象实例时都会创建一个新的实例,解决方案如下:
//测试例子(四种写解决方式雷同)
public class Singleton implements java.io.Serializable {
public static Singleton INSTANCE = new Singleton();
protected Singleton() {
}
//反序列时直接返回当前INSTANCE
private Object readResolve() {
return INSTANCE;
}
}
使用反射强行调用私有构造器,解决方式可以修改构造器,让它在创建第二个实例的时候抛异常,如下:
public static Singleton INSTANCE = new Singleton();
private static volatile boolean flag = true;
private Singleton(){
if(flag){
flag = false;
}else{
throw new RuntimeException("The instance already exists !");
}
}
如上所述,问题确实也得到了解决,但问题是我们为此付出了不少努力,即添加了不少代码,还应该注意到如果单例类维持了其他对象的状态时还需要使他们成为transient的对象,这种就更复杂了,那有没有更简单更高效的呢?当然是有的,那就是枚举单例了,先来看看如何实现:
/**
* 枚举单利
*/
public enum SingletonEnum {
INSTANCE;
private String name;
public String getName(){
return name;
}
public void setName(String name){
this.name = name;
}
}
代码相当简洁,我们也可以像常规类一样编写enum类,为其添加变量和方法,访问方式也更简单,使用SingletonEnum.INSTANCE进行访问,这样也就避免调用getInstance方法,更重要的是使用枚举单例的写法,我们完全不用考虑序列化和反射的问题。枚举序列化是由jvm保证的,每一个枚举类型和定义的枚举变量在JVM中都是唯一的,在枚举类型的序列化和反序列化上,Java做了特殊的规定:在序列化时Java仅仅是将枚举对象的name属性输出到结果中,反序列化的时候则是通过java.lang.Enum的valueOf方法来根据名字查找枚举对象。同时,编译器是不允许任何对这种序列化机制的定制的并禁用了writeObject、readObject、readObjectNoData、writeReplace和readResolve等方法,从而保证了枚举实例的唯一性,这里我们不妨再次看看Enum类的valueOf方法:
public static T valueOf(Class enumType,
String name) {
T result = enumType.enumConstantDirectory().get(name);
if (result != null)
return result;
if (name == null)
throw new NullPointerException("Name is null");
throw new IllegalArgumentException(
"No enum constant " + enumType.getCanonicalName() + "." + name);
}
实际上通过调用enumType(Class对象的引用)的enumConstantDirectory方法获取到的是一个Map集合,在该集合中存放了以枚举name为key和以枚举实例变量为value的Key&Value数据,因此通过name的值就可以获取到枚举实例,看看enumConstantDirectory方法源码:
Map enumConstantDirectory() {
if (enumConstantDirectory == null) {
//getEnumConstantsShared最终通过反射调用枚举类的values方法
T[] universe = getEnumConstantsShared();
if (universe == null)
throw new IllegalArgumentException(
getName() + " is not an enum type");
Map m = new HashMap(2 * universe.length);
//map存放了当前enum类的所有枚举实例变量,以name为key值
for (T constant : universe)
m.put(((Enum)constant).name(), constant);
enumConstantDirectory = m;
}
return enumConstantDirectory;
}
private volatile transient Map enumConstantDirectory = null;
到这里我们也就可以看出枚举序列化确实不会重新创建新实例,jvm保证了每个枚举实例变量的唯一性。再来看看反射到底能不能创建枚举,下面试图通过反射获取构造器并创建枚举
public static void main(String[] args) throws IllegalAccessException, InvocationTargetException, InstantiationException, NoSuchMethodException {
//获取枚举类的构造函数(前面的源码已分析过)
Constructor constructor=SingletonEnum.class.getDeclaredConstructor(String.class,int.class);
constructor.setAccessible(true);
//创建枚举
SingletonEnum singleton=constructor.newInstance("otherInstance",9);
}
执行报错
Exception in thread "main" java.lang.IllegalArgumentException: Cannot reflectively create enum objects
at java.lang.reflect.Constructor.newInstance(Constructor.java:417)
at zejian.SingletonEnum.main(SingletonEnum.java:38)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
显然告诉我们不能使用反射创建枚举类,这是为什么呢?不妨看看newInstance方法源码:
public T newInstance(Object ... initargs)
throws InstantiationException, IllegalAccessException,
IllegalArgumentException, InvocationTargetException
{
if (!override) {
if (!Reflection.quickCheckMemberAccess(clazz, modifiers)) {
Class caller = Reflection.getCallerClass();
checkAccess(caller, clazz, null, modifiers);
}
}
//这里判断Modifier.ENUM是不是枚举修饰符,如果是就抛异常
if ((clazz.getModifiers() & Modifier.ENUM) != 0)
throw new IllegalArgumentException("Cannot reflectively create enum objects");
ConstructorAccessor ca = constructorAccessor; // read volatile
if (ca == null) {
ca = acquireConstructorAccessor();
}
@SuppressWarnings("unchecked")
T inst = (T) ca.newInstance(initargs);
return inst;
}
源码很了然,确实无法使用反射创建枚举实例,也就是说明了创建枚举实例只有编译器能够做到而已。显然枚举单例模式确实是很不错的选择,因此我们推荐使用它。但是这总不是万能的,对于android平台这个可能未必是最好的选择,在android开发中,内存优化是个大块头,而使用枚举时占用的内存常常是静态变量的两倍还多,因此android官方在内存优化方面给出的建议是尽量避免在android中使用enum。但是不管如何,关于单例,我们总是应该记住:线程安全,延迟加载,序列化与反序列化安全,反射安全是很重重要的。
五、java枚举类与常量的区别1)枚举型可以直接与数据库打交道,我通常使用varchar类型存储,对应的是枚举的常量名。(数据库中好像也有枚举类型,不过也没用过) 2) switch语句支持枚举型,当switch使用int、String类型时,由于值的不稳定性往往会有越界的现象,对于这个的处理往往只能通过if条件筛选以及default模块来处理。而使用枚举型后,在编译期间限定类型,不允许发生越界的情况 3) 当你使用常量类时,往往得通过equals去判断两者是否相等,使用枚举的话由于常量值地址唯一,可以用==直接对比,性能会有提高 4) 常量类编译时,是直接把常量的值编译到类的二进制代码里,常量的值在升级中变化后,需要重新编译引用常量的类,因为里面存的是旧值。枚举类编译时,没有把常量值编译到代码里,即使常量的值发生变化,也不会影响引用常量的类。 5)枚举类编译后默认为final class,不允许继承可防止被子类修改。常量类可被继承修改、增加字段等,容易导致父类的不兼容。
博文参考深入理解Java枚举类型(enum)_zejian_的博客-CSDN博客_java枚举类