LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易。这个系统是建立在JVM平台上,其核心是一个业务逻辑处理器,它能够在一个线程里每秒处理6百万订单。业务逻辑处理器完全是运行在内存中,使用事件源驱动方式。业务逻辑处理器的核心是Disruptor。 Disruptor它是一个开源的并发框架,并获得2011 Duke’s 程序框架创新奖,能够在无锁的情况下实现网络的Queue并发操作。 Disruptor是一个高性能的异步处理框架,或者可以认为是最快的消息框架(轻量的JMS),也可以认为是一个观察者模式的实现,或者事件监听模式的实现。 在Disruptor中,我们想实现hello world 需要如下几步骤: 第一:建立一个Event类 第二:建立一个工厂Event类,用于创建Event类实例对象 第三:需要有一个监听事件类,用于处理数据(Event类) 第四:我们需要进行测试代码编写。实例化Disruptor实例,配置一系列参数。然后我们对Disruptor实例绑定监听事件类,接受并处理数据。 第五:在Disruptor中,真正存储数据的核心叫做RingBuffer,我们通过Disruptor实例拿到它,然后把数据生产出来,把数据加入到RingBuffer的实例对象中即可。 Event类:数据封装类
public class LongEvent { private Long value; public Long getValue() { return value; } public void setValue(Long value) { this.value = value; } }
工厂Event类:实现EventFactory<>接口的实现类
public class LongEventFactory implements EventFactory<LongEvent>{ @Override public LongEvent newInstance() { return new LongEvent(); } }
EventHandler类:数据处理类实现EventHandler<>接口
/** * 消费者,事件监听 * @author Administrator * */ public class LongEventHandler implements EventHandler<LongEvent>{ @Override public void onEvent(LongEvent longEvent, long l, boolean b) throws Exception { //消费,数据处理 System.out.println(longEvent.getValue()); } }
数据生产类:
public class LongEventProducer { private final RingBuffer<LongEvent> ringBuffer; public LongEventProducer(RingBuffer<LongEvent> ringBuffer) { this.ringBuffer=ringBuffer; } public void onData(ByteBuffer bb) { //可以把ringBuffer看做一个事件队列,那么next就是得到下面一个事件槽 long sequence=ringBuffer.next(); try { //用上面的索引取出一个空的事件用于填充 LongEvent l=ringBuffer.get(sequence); l.setValue(bb.getLong( 0 )); }catch (Exception e) { }finally { ringBuffer.publish(sequence); } } }
测试类:
public class LongEventTest { public static void main(String[] args) { ExecutorService executor=Executors.newCachedThreadPool(); LongEventFactory eventFactory=new LongEventFactory(); //必须2的N次方 int ringBufferSize = 1024 * 1024 ; /** //BlockingWaitStrategy 是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现 WaitStrategy BLOCKING_WAIT = new BlockingWaitStrategy(); //SleepingWaitStrategy 的性能表现跟BlockingWaitStrategy差不多,对CPU的消耗也类似,但其对生产者线程的影响最小,适合用于异步日志类似的场景 WaitStrategy SLEEPING_WAIT = new SleepingWaitStrategy(); //YieldingWaitStrategy 的性能是最好的,适合用于低延迟的系统。在要求极高性能且事件处理线数小于CPU逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性 WaitStrategy YIELDING_WAIT = new YieldingWaitStrategy(); */ Disruptor<LongEvent> dis=new Disruptor<>(eventFactory, ringBufferSize, executor, ProducerType.SINGLE, new YieldingWaitStrategy()); dis.handleEventsWith(new LongEventHandler()); dis.start(); RingBuffer<LongEvent> ringBuffer=dis.getRingBuffer(); LongEventProducer producer=new LongEventProducer(ringBuffer); //LongEventProducerWithTranslator producer = new LongEventProducerWithTranslator(ringBuffer); ByteBuffer bb=ByteBuffer.allocate( 8 ); for (int i = 0 ; i < 100 ; i++) { bb.putLong( 0 ,i); producer.onData(bb); } dis.shutdown(); executor.shutdown(); } } EventProducerWithTranslator实现方式: public class LongEventProducerWithTranslator { //一个translator可以看做一个事件初始化器,publicEvent方法会调用它 //填充Event private static final EventTranslatorOneArg<LongEvent, ByteBuffer> TRANSLATOR= new EventTranslatorOneArg<LongEvent, ByteBuffer>() { @Override public void translateTo(LongEvent event, long sequence, ByteBuffer buffer) { event.setValue(buffer.getLong( 0 )); } }; private final RingBuffer<LongEvent> ringBuffer; public LongEventProducerWithTranslator(RingBuffer<LongEvent> ringBuffer) { this.ringBuffer=ringBuffer; } public void onData(ByteBuffer buffer) { ringBuffer.publishEvent(TRANSLATOR,buffer); } }Disruptor术语说明
RingBuffer: 被看作Disruptor最主要的组件,然而从3.0开始RingBuffer仅仅负责存储和更新在Disruptor中流通的数据。对一些特殊的使用场景能够被用户(使用其他数据结构)完全替代。 Sequence: Disruptor使用Sequence来表示一个特殊组件处理的序号。和Disruptor一样,每个消费者(EventProcessor)都维持着一个Sequence。大部分的并发代码依赖这些Sequence值的运转,因此Sequence支持多种当前为AtomicLong类的特性。 Sequencer: 这是Disruptor真正的核心。实现了这个接口的两种生产者(单生产者和多生产者)均实现了所有的并发算法,为了在生产者和消费者之间进行准确快速的数据传递。 SequenceBarrier: 由Sequencer生成,并且包含了已经发布的Sequence的引用,这些的Sequence源于Sequencer和一些独立的消费者的Sequence。它包含了决定是否有供消费者来消费的Event的逻辑。 WaitStrategy:决定一个消费者将如何等待生产者将Event置入Disruptor。 Event:从生产者到消费者过程中所处理的数据单元。Disruptor中没有代码表示Event,因为它完全是由用户定义的。 EventProcessor:主要事件循环,处理Disruptor中的Event,并且拥有消费者的Sequence。它有一个实现类是BatchEventProcessor,包含了event loop有效的实现,并且将回调到一个EventHandler接口的实现对象。 EventHandler:由用户实现并且代表了Disruptor中的一个消费者的接口。 Producer:由用户实现,它调用RingBuffer来插入事件(Event),在Disruptor中没有相应的实现代码,由用户实现。 WorkProcessor:确保每个sequence只被一个processor消费,在同一个WorkPool中的处理多个WorkProcessor不会消费同样的sequence。 WorkerPool:一个WorkProcessor池,其中WorkProcessor将消费Sequence,所以任务可以在实现WorkHandler接口的worker吃间移交 LifecycleAware:当BatchEventProcessor启动和停止时,于实现这个接口用于接收通知。
EventProcessor使用: handler消费类:
public class TradeHandler implements EventHandler<Trade>,WorkHandler<Trade>{ @Override public void onEvent(Trade event) throws Exception { //生成订单id event.setId(UUID.randomUUID().toString()); System.out.println(event); } @Override public void onEvent(Trade event, long sequence, boolean endOfBatch) throws Exception { this.onEvent(event); } }
Trade数据封装类:
public class Trade { private String id;//id private String name;//名称 private double price;//金额 private AtomicInteger count=new AtomicInteger( 0 ); public String getId() { return id; } public void setId(String id) { this.id = id; } public String getName() { return name; } public void setName(String name) { this.name = name; } public double getPrice() { return price; } public void setPrice(double price) { this.price = price; } public AtomicInteger getCount() { return count; } public void setCount(AtomicInteger count) { this.count = count; } }
EventProcessorMain测试类:
public static void main(String[] args) throws InterruptedException, ExecutionException { int BUFFER_SIZE= 1024 ; int THREAD_NUMBERS= 4 ; /* * createSingleProducer创建一个单生产者的RingBuffer, * 第一个参数叫EventFactory,从名字上理解就是"事件工厂",其实它的职责就是产生数据填充RingBuffer的区块。 * 第二个参数是RingBuffer的大小,它必须是2的指数倍 目的是为了将求模运算转为&运算提高效率 * 第三个参数是RingBuffer的生产都在没有可用区块的时候(可能是消费者(或者说是事件处理器) 太慢了)的等待策略 */ final RingBuffer<Trade> ringBuffer=RingBuffer.createSingleProducer(new EventFactory<Trade>() { @Override public Trade newInstance() { return new Trade(); } }, BUFFER_SIZE,new YieldingWaitStrategy()); //创建一个线程池 ExecutorService executors=Executors.newFixedThreadPool(THREAD_NUMBERS); //创建SequenceBarrier SequenceBarrier sequenceBarrier=ringBuffer.newBarrier(); //创建消息处理器 BatchEventProcessor<Trade> transProcessor=new BatchEventProcessor<Trade>(ringBuffer, sequenceBarrier, new TradeHandler()); //这一步的目的是把消费者的位置信息引用注入到生产者 如果只有一个消费者的情况可以省略 ringBuffer.addGatingSequences(transProcessor.getSequence()); //把消息处理器提交到线程池 executors.submit(transProcessor); //如果存在多个消费者,那么重复执行上面三行代码,把TradeHandler换成其他消费者类 Future<?> future=executors.submit(new Callable<Trade>() { @Override public Trade call() throws Exception { long seq; for(int i= 0 ;i< 10 ;i++) { seq=ringBuffer.next();//占一个坑-----ringBuffer一个可用区块 ringBuffer.get(seq).setPrice(Math.random()* 9999 );//给这个区块放入数据 ringBuffer.publish(seq);//发布这个区块的数据使handler(consumer)可见 } return null; } }); future.get();//等待生成者结束 Thread.sleep( 1000 );//等待一秒,等消费者处理完成 transProcessor.halt();//通知事件(或者说消息)处理器,可以结束了(并不是马上结束) executors.shutdown();//终止线程 }
WorkProcessor使用: WorkProcessorMain测试类:
import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import com.lmax.disruptor.EventFactory; import com.lmax.disruptor.IgnoreExceptionHandler; import com.lmax.disruptor.RingBuffer; import com.lmax.disruptor.SequenceBarrier; import com.lmax.disruptor.WorkHandler; import com.lmax.disruptor.WorkerPool; public class WorkProcessorMain { public static void main(String[] args) throws InterruptedException, ExecutionException { int BUFFER_SIZE = 1024 ; int THREAD_NUMBERS = 4 ; EventFactory<Trade> eventFactory = new EventFactory<Trade>() { @Override public Trade newInstance() { return new Trade(); } }; final RingBuffer<Trade> ringBuffer = RingBuffer.createSingleProducer(eventFactory, BUFFER_SIZE); SequenceBarrier sequenceBarrier = ringBuffer.newBarrier(); ExecutorService executors = Executors.newFixedThreadPool(THREAD_NUMBERS); WorkHandler<Trade> handler = new TradeHandler(); WorkerPool<Trade> workerPool = new WorkerPool<>(ringBuffer, sequenceBarrier, new IgnoreExceptionHandler(), handler); workerPool.start(executors); // 如果存在多个消费者,那么重复执行上面三行代码,把TradeHandler换成其他消费者类 Future<?> future = executors.submit(new Callable<Trade>() { @Override public Trade call() throws Exception { long seq; for (int i = 0 ; i < 10 ; i++) { seq = ringBuffer.next();// 占一个坑-----ringBuffer一个可用区块 ringBuffer.get(seq).setPrice(Math.random() * 9999 );// 给这个区块放入数据 ringBuffer.publish(seq);// 发布这个区块的数据使handler(consumer)可见 } return null; } }); future.get();// 等待生成者结束 Thread.sleep( 1000 );// 等待一秒,等消费者处理完成 workerPool.halt();// 通知事件(或者说消息)处理器,可以结束了(并不是马上结束) executors.shutdown();// 终止线程 } }并行计算 - 多边形高端操作 菱形操作
Disruptor可实现串并行同时编码。
在复杂场景下使用RingBuffer(希望P1生产的数据给C1、C2并行执行,最后C1、C2执行结束后C3执行)
-
C1和C2并行执行。
C1h和C2并行执行,C4和C5并行执行,并行执行完后执行C3 示例: C1:
import com.lmax.disruptor.EventHandler; import com.lmax.disruptor.WorkHandler; import com.moudle.disruptorDemo.generate1.Trade; public class Handler1 implements EventHandler<Trade>,WorkHandler<Trade>{ @Override public void onEvent(Trade trade) throws Exception { System.out.println("handler1 set name:"); trade.setName("h1"); Thread.sleep( 1000 ); } @Override public void onEvent(Trade arg0, long arg1, boolean arg2) throws Exception { this.onEvent(arg0); } }
C2
import com.lmax.disruptor.EventHandler; import com.lmax.disruptor.WorkHandler; import com.moudle.disruptorDemo.generate1.Trade; public class Handler2 implements EventHandler<Trade>,WorkHandler<Trade>{ @Override public void onEvent(Trade trade) throws Exception { System.out.println("handler2 set price:"); trade.setPrice( 17 ); Thread.sleep( 1000 ); } @Override public void onEvent(Trade arg0, long arg1, boolean arg2) throws Exception { this.onEvent(arg0); } }
C3
import com.lmax.disruptor.EventHandler; import com.lmax.disruptor.WorkHandler; import com.moudle.disruptorDemo.generate1.Trade; public class Handler3 implements EventHandler<Trade>,WorkHandler<Trade>{ @Override public void onEvent(Trade event) throws Exception { System.out.println("handler3: name: " + event.getName() + " , price: " + event.getPrice() + "; instance: " + event.toString()); } @Override public void onEvent(Trade arg0, long arg1, boolean arg2) throws Exception { this.onEvent(arg0); } }
C4
import com.lmax.disruptor.EventHandler; import com.lmax.disruptor.WorkHandler; import com.moudle.disruptorDemo.generate1.Trade; public class Handler4 implements EventHandler<Trade>,WorkHandler<Trade>{ @Override public void onEvent(Trade trade) throws Exception { System.out.println("handler4 set addName:"); trade.setName(trade.getName()+"h4"); } @Override public void onEvent(Trade arg0, long arg1, boolean arg2) throws Exception { this.onEvent(arg0); } }
C5
import com.lmax.disruptor.EventHandler; import com.lmax.disruptor.WorkHandler; import com.moudle.disruptorDemo.generate1.Trade; public class Handler5 implements EventHandler<Trade>,WorkHandler<Trade>{ @Override public void onEvent(Trade trade) throws Exception { System.out.println("handler5 set add price:"); trade.setPrice(trade.getPrice()+ 3 ); } @Override public void onEvent(Trade arg0, long arg1, boolean arg2) throws Exception { this.onEvent(arg0); } }
P1(生产者)
import java.util.Random; import java.util.concurrent.CountDownLatch; import com.lmax.disruptor.EventTranslator; import com.lmax.disruptor.dsl.Disruptor; import com.moudle.disruptorDemo.generate1.Trade; public class TradePublisher implements Runnable{ Disruptor<Trade> disruptor; private CountDownLatch latch; private static int count = 1 ;//模拟百万次交易的发生 public TradePublisher(Disruptor<Trade> disruptor,CountDownLatch latch){ this.disruptor=disruptor; this.latch=latch; } @Override public void run() { TradeEventTranslator translator=new TradeEventTranslator(); for(int i= 0 ;i<count;i++){ disruptor.publishEvent(translator); } latch.countDown(); } } class TradeEventTranslator implements EventTranslator<Trade>{ private Random random=new Random(); @Override public void translateTo(Trade trade, long arg1) { this.generateTrade(trade); } private Trade generateTrade(Trade trade){ trade.setPrice(random.nextDouble()* 9999 ); return trade; } }
Main:
package com.moudle.disruptorDemo.generate2; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import com.lmax.disruptor.BusySpinWaitStrategy; import com.lmax.disruptor.EventFactory; import com.lmax.disruptor.dsl.Disruptor; import com.lmax.disruptor.dsl.EventHandlerGroup; import com.lmax.disruptor.dsl.ProducerType; import com.moudle.disruptorDemo.generate1.Trade; public class Main { public static void main(String[] args) throws InterruptedException { long beginTime=System.currentTimeMillis(); int bufferSize= 1024 ; ExecutorService executor=Executors.newFixedThreadPool( 8 ); Disruptor<Trade> disruptor=new Disruptor<>(new EventFactory<Trade>() { @Override public Trade newInstance() { return new Trade(); } }, bufferSize, executor, ProducerType.SINGLE, new BusySpinWaitStrategy()); //菱形操作 //使用disruptor创建消费者组C1,C2 EventHandlerGroup<Trade> handlerGroup=disruptor.handleEventsWith(new Handler1(),new Handler2()); //声明在C1,C2完事之后执行JMS消息发送操作 也就是流程走到C3 handlerGroup.then(new Handler3()); //輸出結果: // handler1 set name: // handler2 set price: // handler3: name: h1 , price: 17.0; instance: com.moudle.disruptorDemo.generate1.Trade@220a5c4d /*//六边形操作 Handler1 h1 = new Handler1(); Handler2 h2 = new Handler2(); Handler3 h3 = new Handler3(); Handler4 h4 = new Handler4(); Handler5 h5 = new Handler5(); disruptor.handleEventsWith(h1,h2); disruptor.after(h1).handleEventsWith(h4); disruptor.after(h2).handleEventsWith(h5); disruptor.after(h4,h5).handleEventsWith(h3); //输出结果: // handler1 set name: // handler2 set price: // handler4 set addName: // handler5 set add price: // handler3: name: h1h4 , price: 20.0; instance: com.moudle.disruptorDemo.generate1.Trade@5e6d6957 */ /* //顺序执行 disruptor.handleEventsWith(new Handler1()). handleEventsWith(new Handler2()). handleEventsWith(new Handler3()); //输出结果: // handler1 set name: // handler2 set price: // handler3: name: h1 , price: 17.0; instance: com.moudle.disruptorDemo.generate1.Trade@331d6441 */ disruptor.start();//启动 CountDownLatch latch=new CountDownLatch( 1 ); //生产者准备 executor.submit(new TradePublisher(disruptor, latch)); latch.await();//等待生产完成 disruptor.shutdown(); executor.shutdown(); } }
多生产者多消费者的使用: Order订单类:
package com.moudle.disruptorDemo.multi; public class Order { private String id;//id private String name;// private double price;// public String getId() { return id; } public void setId(String id) { this.id = id; } public String getName() { return name; } public void setName(String name) { this.name = name; } public double getPrice() { return price; } public void setPrice(double price) { this.price = price; } }
Producer生产者:
package com.moudle.disruptorDemo.multi; import com.lmax.disruptor.RingBuffer; public class Producer { private final RingBuffer<Order> ringBuffer; public Producer(RingBuffer<Order> ringBuffer){ this.ringBuffer=ringBuffer; } /** * onData用来发布事件,每调用一次就发布一次事件 * 它的参数会用过事件传递给消费者 */ public void onData(String data){ //可以把ringBuffer看做一个事件队列,那么next就是得到下面一个事件槽 long sequence=ringBuffer.next(); try { //用上面的索引取出一个空的事件用于填充(获取该序号对应的事件对象) Order order=ringBuffer.get(sequence); //获取要通过事件传递的业务数据 order.setId(data); } catch (Exception e) { }finally{ //发布事件 //注意,最后的 ringBuffer.publish 方法必须包含在 finally 中以确保必须得到调用;如果某个请求的 sequence 未被提交,将会堵塞后续的发布操作或者其它的 producer。 ringBuffer.publish(sequence); } } }
Consumer消费者:
package com.moudle.disruptorDemo.multi; import java.util.concurrent.atomic.AtomicInteger; import com.lmax.disruptor.WorkHandler; public class Consumer implements WorkHandler<Order>{ private String consumerId; private static AtomicInteger count=new AtomicInteger( 0 ); public Consumer(String consumerId){ this.consumerId=consumerId; } @Override public void onEvent(Order order) throws Exception { System.out.println("当前消费者:"+this.consumerId+",消费消息:"+order); count.incrementAndGet(); } public int getCount(){ return count.get(); } }
Main测试类:
package com.moudle.disruptorDemo.multi; import java.util.UUID; import java.util.concurrent.CountDownLatch; import java.util.concurrent.Executor; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import com.lmax.disruptor.EventFactory; import com.lmax.disruptor.ExceptionHandler; import com.lmax.disruptor.RingBuffer; import com.lmax.disruptor.SequenceBarrier; import com.lmax.disruptor.WorkerPool; import com.lmax.disruptor.YieldingWaitStrategy; import com.lmax.disruptor.dsl.ExceptionHandlerWrapper; import com.lmax.disruptor.dsl.ProducerType; public class Main { public static void main(String[] args) throws Exception{ // RingBuffer<Order> ringBuffer=RingBuffer.create( // ProducerType.MULTI, new EventFactory<Order>() { // @Override // public Order newInstance() { // return new Order(); // } // }, 1024*1024, new YieldingWaitStrategy()); //创建ringBuffer RingBuffer<Order> ringBuffer=RingBuffer.createMultiProducer(new EventFactory<Order>() { @Override public Order newInstance() { return new Order(); } }, 1024 * 1024 , new YieldingWaitStrategy()); //创建SequenceBarrier SequenceBarrier barriers=ringBuffer.newBarrier(); //创建3个消费者实例 Consumer[] consumers=new Consumer[ 3 ]; for (int i = 0 ; i < consumers.length; i++) { consumers[i]=new Consumer("c"+i); } WorkerPool<Order> workerPool=new WorkerPool<>( ringBuffer, barriers, new IntEventExceptionHandler(), consumers); //这一步的目的是把消费者的位置信息引用注入到生产者 如果只有一个消费者的情况可以省略。 //workerPool.getWorkerSequences()获取Sequence集合 ringBuffer.addGatingSequences(workerPool.getWorkerSequences()); //创建线程池 ExecutorService executorService=Executors.newFixedThreadPool(Runtime.getRuntime().availableProcessors()); workerPool.start(executorService); final CountDownLatch latch=new CountDownLatch( 1 ); for (int i = 0 ; i < 100 ; i++) { final Producer producer=new Producer(ringBuffer); new Thread(new Runnable() { @Override public void run() { try { //等待生产者100个线程启动 latch.await(); for (int j = 0 ; j < 100 ; j++) { //生产数据 producer.onData(UUID.randomUUID().toString()); } } catch (InterruptedException e) { e.printStackTrace(); } } }).start(); } //等待两秒,等生产者的100个线程启动 Thread.sleep( 2000 ); System.out.println("---------------开始生产-----------------"); latch.countDown(); Thread.sleep( 5000 ); System.out.println("总数:"+consumers[ 0 ].getCount()); executorService.shutdown(); } static class IntEventExceptionHandler implements ExceptionHandler<Order>{ @Override public void handleEventException(Throwable arg0, long arg1, Order arg2) { } @Override public void handleOnShutdownException(Throwable arg0) { } @Override public void handleOnStartException(Throwable arg0) { } } }
参考
- https://programtip.com/zh/art-111663