无多线程竞争时,减少不必要的轻量级锁执行路径。大多数情况下,锁不仅不存在多线程竞争,而且总是由同一条线程去多次获得锁,为了让线程获得锁的性能代价更低而引入了偏向锁。
偏向锁主要用来优化同一线程多次申请同一个锁的竞争,即当对象被当做同步锁并有一个线程抢到了锁时,则在Mark Word设置该线程的线程ID、是否偏向锁设置1、锁标志位设置01等信息,此时的Mark Word 存储的就是偏向锁状态信息。
在:
-
创建一个线程并在线程中执行循环监听的场景下
-
或单线程操作一个线程安全集合时
同一线程每次都需获取和释放锁,每次操作都会发生用户态与内核态的切换。
获取偏向锁的场景:
在自己的线程栈生成一条Lock Record,然后Object Reference指向对象头,此时Lock Record与对象头就建立了联系:
① : 先判断Mard Word的Thread ID是否有值
- 没有,则表示当前资源没有被其他线程占用,把当前线程ID等信息记录到Mark Word(这需CAS,可能多条线程修改Mark Word,需要保证原子性)
-
有,则表示当前资源被线程占用,需要判断该线程是不是自己
- 该线程ID是自己的,则表示可重入,直接获取(此时在自己的线程栈中继续生成一条新的Lock Record)
- 该线程ID不是自己的,说明出现其他线程竞争,当前持有偏向锁的线程就需要撤销了,即当其他线程尝试获取偏向锁才释放锁
轻量级锁的获取及释放依赖多次的CAS操作,而偏向锁只依赖一次CAS置换ThreadID。
一旦出现多个线程竞争时必须撤销偏向锁,所以:
撤销偏向锁消耗的性能必须 < 之前节省下来的CAS原子操作的性能消耗
不然得不偿失!
JDK6默认开启偏向锁,可通过-XX:-UseBiasedLocking禁用偏向锁。
2 偏向锁的获取偏向锁的入口,synchronizer.cpp 文件的
ObjectSynchronizer::fast_enter
由BiasedLocking::revoke_and_rebias实现
获取对象的markOop数据mark,即对象头的Mark Word
mark的偏向锁的锁标志位为 01
2.3 判断mark中JavaThread的状态- 若指向当前线程,则执行同步代码块
- 若为空,则走4
- 若指向其它线程,则走5
设置mark中JavaThread为当前线程ID。
若CAS成功,则执行同步代码块,否则走5。
2.5 执行CAS失败说明当前存在多个线程竞争锁,当达到全局安全点(safepoint),获得偏向锁的线程就会被挂起,撤销偏向锁,并升级为轻量级锁。
升级完成后被阻塞在安全点的线程继续执行同步代码块。
BiasedLocking::Condition BiasedLocking::revoke_and_rebias(Handle obj, bool attempt_rebias, TRAPS) { assert(!SafepointSynchronize::is_at_safepoint(), "must not be called while at safepoint"); // We can revoke the biases of anonymously-biased objects // efficiently enough that we should not cause these revocations to // update the heuristics because doing so may cause unwanted bulk // revocations (which are expensive) to occur. // step1 markOop mark = obj->mark(); if (mark->is_biased_anonymously() && !attempt_rebias) { // We are probably trying to revoke the bias of this object due to // an identity hash code computation. Try to revoke the bias // without a safepoint. This is possible if we can successfully // compare-and-exchange an unbiased header into the mark word of // the object, meaning that no other thread has raced to acquire // the bias of the object. markOop biased_value = mark; markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age()); markOop res_mark = (markOop) Atomic::cmpxchg_ptr(unbiased_prototype, obj->mark_addr(), mark); if (res_mark == biased_value) { return BIAS_REVOKED; } } else if (mark->has_bias_pattern()) { Klass* k = obj->klass(); markOop prototype_header = k->prototype_header(); if (!prototype_header->has_bias_pattern()) { // This object has a stale bias from before the bulk revocation // for this data type occurred. It's pointless to update the // heuristics at this point so simply update the header with a // CAS. If we fail this race, the object's bias has been revoked // by another thread so we simply return and let the caller deal // with it. markOop biased_value = mark; markOop res_mark = (markOop) Atomic::cmpxchg_ptr(prototype_header, obj->mark_addr(), mark); assert(!(*(obj->mark_addr()))->has_bias_pattern(), "even if we raced, should still be revoked"); return BIAS_REVOKED; } else if (prototype_header->bias_epoch() != mark->bias_epoch()) { // The epoch of this biasing has expired indicating that the // object is effectively unbiased. Depending on whether we need // to rebias or revoke the bias of this object we can do it // efficiently enough with a CAS that we shouldn't update the // heuristics. This is normally done in the assembly code but we // can reach this point due to various points in the runtime // needing to revoke biases. if (attempt_rebias) { assert(THREAD->is_Java_thread(), ""); markOop biased_value = mark; markOop rebiased_prototype = markOopDesc::encode((JavaThread*) THREAD, mark->age(), prototype_header->bias_epoch()); markOop res_mark = (markOop) Atomic::cmpxchg_ptr(rebiased_prototype, obj->mark_addr(), mark); if (res_mark == biased_value) { return BIAS_REVOKED_AND_REBIASED; } } else { markOop biased_value = mark; markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age()); markOop res_mark = (markOop) Atomic::cmpxchg_ptr(unbiased_prototype, obj->mark_addr(), mark); if (res_mark == biased_value) { return BIAS_REVOKED; } } } } HeuristicsResult heuristics = update_heuristics(obj(), attempt_rebias); if (heuristics == HR_NOT_BIASED) { return NOT_BIASED; } else if (heuristics == HR_SINGLE_REVOKE) { Klass *k = obj->klass(); markOop prototype_header = k->prototype_header(); if (mark->biased_locker() == THREAD && prototype_header->bias_epoch() == mark->bias_epoch()) { // A thread is trying to revoke the bias of an object biased // toward it, again likely due to an identity hash code // computation. We can again avoid a safepoint in this case // since we are only going to walk our own stack. There are no // races with revocations occurring in other threads because we // reach no safepoints in the revocation path. // Also check the epoch because even if threads match, another thread // can come in with a CAS to steal the bias of an object that has a // stale epoch. ResourceMark rm; if (TraceBiasedLocking) { tty->print_cr("Revoking bias by walking my own stack:"); } EventBiasedLockSelfRevocation event; BiasedLocking::Condition cond = revoke_bias(obj(), false, false, (JavaThread*) THREAD, NULL); ((JavaThread*) THREAD)->set_cached_monitor_info(NULL); assert(cond == BIAS_REVOKED, "why not?"); if (event.should_commit()) { event.set_lockClass(k); event.commit(); } return cond; } else { EventBiasedLockRevocation event; VM_RevokeBias revoke(&obj, (JavaThread*) THREAD); VMThread::execute(&revoke); if (event.should_commit() && (revoke.status_code() != NOT_BIASED)) { event.set_lockClass(k); // Subtract 1 to match the id of events committed inside the safepoint event.set_safepointId(SafepointSynchronize::safepoint_counter() - 1); event.set_previousOwner(revoke.biased_locker()); event.commit(); } return revoke.status_code(); } } assert((heuristics == HR_BULK_REVOKE) || (heuristics == HR_BULK_REBIAS), "?"); EventBiasedLockClassRevocation event; VM_BulkRevokeBias bulk_revoke(&obj, (JavaThread*) THREAD, (heuristics == HR_BULK_REBIAS), attempt_rebias); VMThread::execute(&bulk_revoke); if (event.should_commit()) { event.set_revokedClass(obj->klass()); event.set_disableBiasing((heuristics != HR_BULK_REBIAS)); // Subtract 1 to match the id of events committed inside the safepoint event.set_safepointId(SafepointSynchronize::safepoint_counter() - 1); event.commit(); } return bulk_revoke.status_code(); }3 偏向锁的撤销
只有当其它线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁。
偏向锁的撤销由BiasedLocking::revoke_at_safepoint实现:
void BiasedLocking::revoke_at_safepoint(Handle h_obj) { assert(SafepointSynchronize::is_at_safepoint(), "must only be called at safepoint"); oop obj = h_obj(); HeuristicsResult heuristics = update_heuristics(obj, false); if (heuristics == HR_SINGLE_REVOKE) { revoke_bias(obj, false, false, NULL, NULL); } else if ((heuristics == HR_BULK_REBIAS) || (heuristics == HR_BULK_REVOKE)) { bulk_revoke_or_rebias_at_safepoint(obj, (heuristics == HR_BULK_REBIAS), false, NULL); } clean_up_cached_monitor_info(); }
- 偏向锁的撤销动作必须等待全局安全点(safepoint,GC时会让所有线程阻塞的停顿点)
- 暂停拥有偏向锁的线程,判断锁对象是否处于被锁定状态
- 撤销偏向锁,恢复到无锁(标志位 01)或轻量级锁(标志位 00)状态
偏向锁在Java 1.6后默认启用,但在应用程序启动几s后才激活,可关闭延迟:
-XX:BiasedLockingStartupDelay=0
若确定应用程序中所有锁通常情况下处于竞争状态,可关闭偏向锁:
XX:-UseBiasedLocking=false(默认打开)偏向锁的释放
遍历线程栈的所有Lock Record,把ObjectReference切断,即ObjectReference = null.
把ObjectReference置null,但锁对象的对象头的Mark Word还是没改变,依然偏向之前的线程,那还是没释放锁的嘛,的确是,线程退出临界区时候,并没有释放偏向锁,这么做是为 : 当再次需要获取锁时,只需要简单判断是否是重入,即可快速获取锁,而不用每次都CAS,这也是偏向锁在只有一个线程访问锁的情景下高效的核心。
总结- 当出现锁资源访问的时候,都会在当前线程栈生成一条Lock Record,并且ObjectReference将指向锁对象的对象头 的Mark Word,该设置可能出现多线程,需CAS操作
- 多线程情况下竞争同一个锁资源,偏向锁的撤销会影响效率
- 偏向锁的重入计数依靠线程栈里Lock Record个数
- 偏向锁撤销失败,最终会升级为轻量级锁
- 偏向锁退出时并没有修改Mark Word,也就是没有释放锁
- 偏向锁相对轻量级锁来说,当同一线程去再次获取锁的时候,不用进行CAS操作,提高了性能.(轻量级锁在同一线程情况下每次去获取锁,在无锁的状态下,每次都要进行一次CAS操作)
- 偏向锁只有遇到其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁,线程不会主动去释放偏向锁
- 偏向锁的撤销是很复杂,成为理解代码的障碍,也阻碍了对同步系统重构,而且现如今基本都是多核系统,偏向锁的劣势越来越明显,所以在Java 15废弃了偏向锁