您当前的位置: 首页 > 

暂无认证

  • 0浏览

    0关注

    94982博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

一文详解点云库PCL

发布时间:2021-04-15 07:00:00 ,浏览量:0

3D is here: Point Cloud Library (PCL)

摘要:

随着新型,低成本的3D传感器硬件的出现(例如Kinect),以及科研人员在高级点云处理研究上的不断努力,3D感知在机器人技术以及其他领域显得愈发重要。

本文,我们将介绍在点云感知领域的一项最新举措:PCL(点云库– http://pointclouds.org)。PCL为3D感知领域提供了一种先进且广泛的方法,旨在为常见的需要用到3D功能的需求提供支持。该库包含用于以下方面的最新算法:滤波,特征估计,表面重建,配准,模型拟合和分段。PCL得到了国际机器人技术和感知研究人员的支持。我们简要介绍下PCL,包括其算法功能和实现策略。

一、介绍

为了使机器人在非结构化环境中工作,他们需要能够感知世界。在过去的20年中,我们走过了一段很长的路。从简单的距离传感器(基于声纳或红外线),提供几个字节的信息;到无处不在的相机;再到激光扫描仪。在过去的几年中,像DARPA Urban Challenge上用的Velodyne旋转激光雷达,和倾斜激光PR2上使用的扫描仪为我们提供了高质量的3D世界的表示形式-点云。但是很遗憾,这些系统都很昂贵,要花费数千甚至数十万美元数千美元,因此很多机器人项目都无法承担这样的开支。

但是最近几年,3D传感器变得很容易获得,这改变了游戏规则。比如,用于微软XBox 360游戏系统的Kinect传感器,基于PrimeSense技术。只要150

关注
打赏
1655516835
查看更多评论
立即登录/注册

微信扫码登录

0.0470s