其实最早可以追溯到十五、十六世纪,就已经有计算机音乐方向的研究了。比如在古典音乐前期,像莫扎特就曾做过一个有趣的音乐实验,他把一段音乐先分成很多片段,每个片段就是一小节,然后再摇骰子,摇到什么就选择哪个片段去组合,最后组合出来的音乐还挺好听的,这在计算机音乐圈被认为是计算机音乐的鼻祖。 至于人工智能技术和音乐的主要结合点,我大概从以下两个方面来做解读。 第一,从音乐本身的数据表现方式来做解读。我们可以粗略地把音乐的表示形态分为两种,一种是我们常见的曲谱、歌词这些符号化的音乐表示方式,另一种是有了曲谱会发出声音,通过歌手唱出来,通过播放器播放出来,或是通过音乐软件渲染出声音传到人耳,这也是更为常见的音乐的表达方式。人工智能与音乐相结合,其实就是将人工智能技术在这两种音乐模态上去发挥一些作用。比如我们可以利用自然语言处理技术,如语言理解、语言生成,来帮助音乐的理解和生成。 第二,从音乐涉及的一些任务来去解读。比如我们可以把音乐粗浅地进行二元划分,一方面是假设我们已经有了音乐,需要对音乐进行处理、理解、检索、转换、加工等等。另一方面,假设我们没有音乐,需要去创造音乐,具体包括制作旋律、词曲写作、伴奏编曲、音色的合成、混音、歌词合成等等。这些刚好对应人工智能技术里比较常见的数据理解和数据生成。 人工智能 + 音乐的应用与技术挑战 InfoQ:您本人也做了一系列 AI 音乐研究,包括音乐理解、词曲创作、伴奏生成、歌声合成等,它们的实现难度和实现路径分别是什么样的?主要会涉及哪些技术和方法? 谭旭:我和我的团队在 AI 音乐生成方向上做了一系列的工作,尤其是围绕流行音乐,具体包括词曲创作、伴奏编曲、歌声合成等等。我们在围绕这些流程去开展相关研究的时候就发现,要想做好音乐生成,离不开对音乐的理解,你需要对音乐的节奏、和声、曲式结构、情感风格有较好的理解。
将人工智能技术在这两种音乐模态上去发挥一些作用
关注
打赏