深度学习目前人工智能最受关注的领域,但并不是人工智能研究的全部。张钹认为尽管产业层面还有空间,但目前基于深度学习的人工智能在技术上已经触及天花板,此前由这一技术路线带来的“奇迹”在AlphaGo获胜后未再出现,而且估计未来也很难继续大量出现。技术改良很难彻底解决目前阶段人工智能的根本性缺陷,而这些缺陷决定了其应用的空间被局限在特定的领域——大部分都集中在图像识别、语音识别两方面。 目前一个很有趣的现象是,全世界的企业界和部分学界对于深度学习技术的判断过于乐观,而学术圈的专家却比较谨慎,甚至悲观。他们认为人工智能迫切需要推动到新的阶段,而这注定将会是一个漫长的过程,有赖于与数学、脑科学等结合实现底层理论的突破。 这一轮人工智能热潮是本世纪初兴起的。首先是出现在学术界。学术界过去对人工智能是冷遇的,但是多层神经网络的出现带来了一些改变,神经网络的理论在上世纪50年代就有了,但是一直处于浅层的应用状态,人们没有想到多层会带来什么新的变化。真正引起大家注意的就是2012年斯坦福的实验(注:2012年谷歌和斯坦福利用多层神经网络和大量数据进行图像识别的实验),过去实验的图像样本数最多是“万”这个级别,斯坦福用了1000万,用多层神经网络来做,结果发现在人脸、人体、猫脸三个图像类别中,这个模型的识别率大概有7%-10%的提高。这给大家非常大的震动,因为通常识别率要提高1%要做好多努力,现在只是把层数增加了,竟然发生两大变化,一个是识别率提高这么多;第二个是能处理这么大数据。这两个变化给大家非常大的鼓舞,何况在2012年之前,人工智能没有解决过实际问题。 现在分析下来是三个原因,大家也都非常清楚了,一个大数据、一个是计算能力、一个是算法。认识到之后,一夜之间业内业外对深度学习都非常震动,然后就发生了三件历史性的事件。第一件事是2015年12月,微软通过152层的深度网络,将图像识别错误率降至3.57%,低于人类的误识率5.1%;第二件事,2016年微软做的语音识别,其词错率5.9%,和专业速记员水平一样;第三件事:Alpha-go打败韩国围棋选手李世石。通过人工智能,利用深度学习、大数据这两个工具,在一定条件下、一定领域内竟然能够超过人类,这三件事情给大家极大的鼓舞。特别是对于圈外的人,都认为我只要掌握了大数据,利用深度学习说不定还能搞出奇迹来,于是大家做了很多很多预测,比如在多短时间内计算机会在什么事情上能超过人。
深度学习是人工智能最受关注的领域,但并不是全部
关注
打赏