随着人工智能技术兴起,在化学领域,传统的基于实验和物理模型的方式逐渐与基于数据的机器学习范式融合。越来越多的用于计算机处理数据表示被开发出来,并不断适应着以生成式为主的统计模型。 虽然工程、金融和商业从新算法中获益匪浅,但获益不仅仅来自算法。几十年来,大规模计算一直是物理科学工具包中不可或缺的一部分 —— 人工智能的一些最新进展已经开始改变科学发现的产生方式。 物理科学领域的杰出成就令人兴奋不已,例如使用机器学习渲染黑洞图像或 AlphaFold 对蛋白质折叠的贡献。本文将介绍人工智能在化学领域的一些更突出的用途,而化学是上述蛋白质折叠问题的母学科。 化学的主要目标之一是了解物质、它的性质以及它可以经历的变化。比如,当我们在寻找新的超导体、疫苗或任何其他具有我们想要特性的材料时,我们会求助于化学这一学科。 传统上,我们认为化学是在配有试管、烧瓶和燃气燃烧器的实验室中完成。但它也受益于计算和量子力学的发展,这两者都在 20 世纪中叶开始崭露头角。早期的应用包括使用计算机来帮助解决基于物理的公式计算;或者是通过将理论化学与计算机编程相结合,我们能够模拟(尽管远非完美)化学系统。最终,这项工作发展成为现在称为计算化学(computational chemistry)的子领域。该子领域在 1970 年代开始兴起发展,并在 1998 年和 2013 年有人凭借该领域获得诺贝尔奖。 即便如此,尽管计算化学在过去几十年中获得了越来越多的认可,但其重要性远没有在实验室所做的实验重要,而实验才是化学发现的基石。 然而,随着当前人工智能、以数据为中心的技术和不断增长的数据量的进步,我们可能正在目睹一种变化,计算方法不仅用于协助实验室实验,还用于指导实验。 化学物质发现过程 那么人工智能是如何实现这种转变的呢?一个特别的发展是将机器学习应用于材料发现和分子设计,这是化学中的两个核心问题。 在传统方法中,分子的设计大致分为四个阶段,如下图所示。需要注意的是,每个阶段都可能需要数年时间和许多资源,并且不能保证成功。 化学物质发现阶段:发现(discovery)、合成、分离与测试(synthesis, isolation and testing)、验证(validation)以及批准与市场营销(approval and marketing)。 发现阶段依赖于几个世纪以来发展起来的用来指导分子设计的理论框架。然而,在寻找「有用」的材料(例如凡士林、铁氟龙、青霉素)时,我们必须记住,其中许多来自自然界中常见的化合物。此外,这些化合物的效用往往是事后才发现的。与此相反,有针对性的搜索是一项需要更多时间和资源的工作(即使那样,人们也可能不得不使用已知的「有用」化合物作为起点)。为了给读者一些概念,据估计,药理活性化学空间(即分子的数量)为 1060!即使在测试和扩展阶段之前,在这样的空间中手动搜索也会花费大量时间和资源。
人工智能的一些最新进展已经开始改变科学发现的产生方式
关注
打赏