GitHub:https://github.com/albarqouni/Deep-Learning-for-Medical-Applications
GitHub:https://github.com/medical-images-process/DeepLearningInMedicalImagingAndMedicalImageAnalysis
医疗数据集:https://blog.csdn.net/Suii_v5/article/details/77920948?locationNum=10&fps=1
乳腺MG数据获取:https://blog.csdn.net/dcxhun3/article/details/52173925
一些常用图像数据库总结:https://blog.csdn.net/JIEJINQUANIL/article/details/50341765
医疗影像论文汇总:https://cloud.tencent.com/developer/article/1064590
1、肺结节数据库LIDC-IDRI:
CSDN数据库介绍:http://blog.csdn.net/dcxhun3/article/details/54289598
数据库网址:https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
2、乳腺图像数据库DDSM MIAS
数据库介绍(DDSM SQL Data Base):http://deckard.mc.duke.edu/ddsm_sql/book1.html
图片格式为LJPEG需要使用对应的压缩方法对其进行解压,目前找到了xMedcon,但是不太会用,打不开相应的文件,也可能是不是使用这个软件压缩的。不过这个软件可以用来转换大部分的医学图像。matlab社区上有how to open lossless jpeg file,但是其中有一些答案提供的网址不能打开,可能是没有科学上网??
数据库网址:http://figment.csee.usf.edu/Mammography/Database.html
MIAS MiniMammographic Database(来自researchgate的一个问答):322例,尺寸:1024*1024pixel,图像数据是PGM格式,找到一个介绍和读取的博客代码使用的c,matlab问答相关
小型乳房X光数据库:http://peipa.essex.ac.uk/pix/mias/all-mias.tar.gz
这也是一个乳腺的图像数据库,但是现在还没有搞清楚下载、格式之类的:https://www.repository.cam.ac.uk/handle/1810/250394?show=full
3、医学图像问答(目前还没搞清楚干嘛的,好像是一个网站的问答。暂存)
网址:http://www.dclunie.com/medical-image-faq/html/index.html
4、左心室MRI图像
Cardiac MRI Dataset: http://www.cse.yorku.ca/~mridataset/
右心室MRI数据RVSC
右心室分割挑战赛(2012):http://pagesperso.litislab.fr/cpetitjean/mr-images-and-contour-data/
5、Kaggle比赛网址:https://www.kaggle.com/
CT Medical Image Analysis Turorial这个比赛好像是分析CT纹理与患者年龄的关系。
肺癌分类比赛:https://www.kaggle.com/c/data-science-bowl-2017/data
分割肺癌(Kaggle):https://www.kaggle.com/kmader/finding-lungs-in-ct-data
DICOM文件打开使用Sante DICOM Free,paraview也可以打开,Mango网站:https://idoimaging.com/programs/124;anteDicom官方下载网址:http://www.santesoft.com/win/sante-dicom-viewer-free/download.html
6、Cancer Imaging Archive这个网站可以获得一些癌症的数据库,下载下来是jnpl文件需要使用jre环境进行下载:
http://www.cancerimagingarchive.net/
7、OsiriX数据库:各种医学数据,好像得注册收费的样子,还没搞清楚
http://www.osirix-viewer.com/resources/dicom-image-library/
8.Github上哈佛 beamandrew机器学习和医学影像研究者-贡献的数据集
https://github.com/beamandrew/medical-data
9.ISBI(生物医学成像国际研讨会)
https://grand-challenge.org/All_Challenges/
10.NITRC的IBSR数据集
一、医疗+深度学习
医疗论文期刊/会议:
- Medical Image Analysis (MedIA)(http://t.cn/RWAEWNJ)
- IEEE Transaction on Medical Imaging (IEEE-TMI)(https://ieee-tmi.org/)
- IEEE Transaction on Biomedical Engineering (IEEE-TBME)(https://tbme.embs.org/)
- IEEE Journal of Biomedical and Health Informatics (IEEE-JBHI)(http://t.cn/RWAnkiL)
- International Journal on Computer Assisted Radiology and Surgery (IJCARS)(http://t.cn/zOTPHNL)
- International Conference on Information Processing in Medical Imaging (IPMI)
- International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
- International Conference on Information Processing in Computer-Assisted Interventions (IPCAI)
- IEEE International Symposium on Biomedical Imaging (ISBI)
3.1,深度学习技术:
- NN: Neural Networks
- MLP: Multilayer Perceptron
- RBM: Restricted Boltzmann Machine
- SAE: Stacked Auto-Encoders
- CAE: Convolutional Auto-Encoders
- CNN: Convolutional Neural Networks
- RNN: Recurrent Neural Networks
- LSTM: Long Short Term Memory
- M-CNN: Multi-Scale/View/Stream CNN
- FCN: Fully Convolutional Networks
-
3.2,成像方式:
- US: Ultrasound
- MR/MRI: Magnetic Resonance Imaging
- PET: Positron Emission Tomography
- MG: Mammography
- CT: Computed Tompgraphy
- H&E: Hematoxylin & Eosin Histology Images
- RGB: Optical Images
- Table of Contents
5.1,Auto-Encoders/ Stacked Auto-Encoders
5.2,Convolutional Neural Networks
AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images(http://t.cn/RWA1lmT) Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images(http://t.cn/RWA1Rma) 5.3,Recurrent Neural Networks
5.4,Generative Adversarial Networks
Medical Applications Annotation
Deep learning of feature representation with multiple instance learning for medical image analysis(http://t.cn/RWA1FkV) AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images (http://t.cn/RWABUT7) Classification
Multi-scale Convolutional Neural Networks for Lung Nodule Classification(http://t.cn/RWADf0A) Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks (http://t.cn/RWADSK4) Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning (http://t.cn/RWADYxw) Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks (http://t.cn/RWADk5G) A Deep Semantic Mobile Application for Thyroid Cytopathology (http://t.cn/RWAko5r) Alzheimer’s Disease Diagnostics by a Deeply Supervised Adaptable 3D Convolutional Network (http://t.cn/RWAkcoj) Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers (http://t.cn/RWAkWVF) Towards Automated Melanoma Screening: Exploring Transfer Learning Schemes (http://t.cn/RWAkEnF) Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks (http://t.cn/RWAF7qb) 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients (http://t.cn/RWAkkPX) Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans (http://t.cn/RWAFyHc) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring (http://t.cn/RWAFILN) Spectral Graph Convolutions for Population-based Disease Prediction (http://t.cn/RWAFohq) SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks (http://t.cn/RWAFYuV) Detection / Localization
3D Deep Learning for Efficient and Robust Landmark Detection in Volumetric Data (http://t.cn/RWAstTB) Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks (http://t.cn/RWAs6xr) Automated anatomical landmark detection ondistal femur surface using convolutional neural network (http://t.cn/RWAsYbY) Automatic Fetal Ultrasound Standard Plane Detection Using Knowledge Transferred Recurrent Neural Networks (http://t.cn/RWAsn1T) Regressing Heatmaps for Multiple Landmark Localization using CNNs (http://t.cn/RW2vv2L) An artificial agent for anatomical landmark detection in medical images (http://t.cn/RW2vy2P) Real-time Standard Scan Plane Detection and Localisation in Fetal Ultrasound using Fully Convolutional Neural Networks (http://t.cn/RW2vft1) Recognizing end-diastole and end-systole frames via deep temporal regression network (http://t.cn/RW2vrQW) Improving Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation Neural Networks (http://t.cn/RW2vrQW) Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique Neural Networks (http://t.cn/RW2hTcw) Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks (http://t.cn/RW2Pu8C) Self-Transfer Learning for Fully Weakly Supervised Lesion Localization (http://t.cn/RW27xd4) Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images (http://t.cn/RWA1Rma) Segmentation
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation (http://t.cn/RW27lTz) Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields (http://t.cn/RW27n2Y) Automatic Liver and Tumor Segmentation of CT and MRI Volumes using Cascaded Fully Convolutional Neural Networks (http://t.cn/RibGTxx) SurvivalNet: Predicting patient survival from diffusion weighted magnetic resonance images using cascaded fully convolutional and 3D convolutional neural networks (http://t.cn/RWAFYuV) q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI (http://t.cn/RW2zfRN)(Section II.B.2) Registration
An Artificial Agent for Robust Image Registration (http://t.cn/RW2zWw4) Regression
作者:work_coder 来源:CSDN 原文:https://blog.csdn.net/weixin_41108334/article/details/83930975 版权声明:本文为博主原创文章,转载请附上博文链接!
二、CV数据 一些常用的图像数据库总结https://blog.csdn.net/JIEJINQUANIL/article/details/50341765
三、乳腺:MIAS MiniMammographic DatabaseMIAS MiniMammographic Database(来自researchgate的一个问答):322例,尺寸:1024*1024pixel,8位,图像数据是PGM格式
数据库(点击即下载):http://peipa.essex.ac.uk/pix/mias/all-mias.tar.gz
这也是一个乳腺的图像数据库,但是现在还没有搞清楚下载、格式之类的:https://www.repository.cam.ac.uk/handle/1810/250394?show=full
1、PGM图片格式和代码PGM是Portable Gray Map的缩写,它是灰度图像格式中一种最简单的格式标准。另外两种与之相近的图片格式是PBM和PPM,它们分别对应着黑白图像和彩色图像。PGM的数据存放方式相比于JPG来说是非常简单的,因为它不进行数据压缩,自然的PGM的图片的大小也就比较大了。一个120*128 8-bit的灰度图像,PGM的大小是44kb,而将这个图片转化为JPG格式后,大小仅为4kb。所以,在日常各种网络应用中你是很难见到PGM图片的,它太浪费流量了。