线性回归之模型的保存和加载
1 sklearn模型的保存和加载API
- from sklearn.externals import joblib 【目前这行代码报错,直接写import joblib就可以了】
- 保存:joblib.dump(estimator, 'test.pkl')
- 加载:estimator = joblib.load('test.pkl')
- 【注意:1.保存文件,后缀名是**.pkl;2.加载模型是需要通过一个变量进行承接】
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import Ridge, RidgeCV
import joblib
def linear_model_demo():
"""
线性回归:岭回归
:return:
"""
# 1.获取数据
data = load_boston()
# 2.数据集划分
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)
# 3.特征工程-标准化
transter = StandardScaler()
x_train = transter.fit_transform(x_train)
x_test = transter.fit_transform(x_test)
# 4.机器学习-线性回归(岭回归)
# # 4.1模型训练
# estimator = Ridge(alpha=1)
# # estimator = RidgeCV(alphas=(0.1, 1, 10))
# estimator.fit(x_train, y_train)
# # 4.2模型保存
# joblib.dump(estimator, "./test.pkl")
# 4.3加载模型
estimator = joblib.load("./test.pkl")
# 5.模型评估
# 5.1获取系数等值
y_predict = estimator.predict(x_test)
print("预测值为:\n", y_predict)
print("模型中的系数为:\n", estimator.coef_)
print("模型中的偏执为:\n", estimator.intercept_)
# 5.2评价
# 均方误差
error = mean_squared_error(y_test, y_predict)
print("误差为:\n", error)
linear_model_demo()
运行结果:
注意: