您当前的位置: 首页 > 

IT之一小佬

暂无认证

  • 0浏览

    0关注

    1192博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

文档自动摘要及案例实现

IT之一小佬 发布时间:2021-04-27 17:23:27 ,浏览量:0

文档自动摘要及案例实现

自动摘要的python实现:

以小说射雕英雄传中的第一段为例:

import pandas as pd
raw = pd.read_table('../data/金庸-射雕英雄传txt精校版.txt', names=['txt'], encoding="GBK")
 
#  章节判断用变量预处理
def m_head(tmpstr):
    return tmpstr[:1]
 
def m_mid(tmpstr):
    return tmpstr.find("回 ")
 
raw['head'] = raw.txt.apply(m_head)
raw['mid'] = raw.txt.apply(m_mid)
raw['len'] = raw.txt.apply(len)
 
 
#  章节判断
chapnum = 0
for i in range(len(raw)):
    if raw['head'][i] == "第" and raw['mid'][i] > 0 and raw['len'][i] < 30:
        chapnum += 1
    if chapnum >= 40 and raw['txt'][i] == "附录一:成吉思汗家族":
        chapnum = 0
    raw.loc[i, 'chap'] = chapnum
                             
 
#  删除临时变量
del raw['head']
del raw['mid']
del raw['len']
 
 
rawgrp = raw.groupby('chap')
chapter = rawgrp.agg(sum)  # 只有字符串的情况下,sum函数自动转为合并字符串
chapter = chapter[chapter.index != 0]
chapter

def cut_sentence(intxt):
    delimiters = frozenset('。!?')
    buf = []
    for ch in intxt:
        buf.append(ch)
        if delimiters.__contains__(ch):
            yield ''.join(buf)
            buf = []
    if buf:
        yield ''.join(buf)
sentdf = pd.DataFrame(cut_sentence(chapter.txt[1]))
sentdf

#  去除过短句子,避免摘要出现无意义的内容
sentdf['txtlen'] = sentdf[0].apply(len)
sentdf

sentlist = sentdf[0][sentdf.txtlen>20]
print(len(sentlist))
sentlist

import jieba
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

txtlist = [" ".join(jieba.lcut(w)) for w in sentlist]

vectorizer = CountVectorizer()
x = vectorizer.fit_transform(txtlist)  # 将文本中的词语转换为词频矩阵
x
tfidf_matrix = TfidfTransformer().fit_transform(x)
tfidf_matrix

#  利用nx包实现pagerank算法
import networkx as nx
similarity = nx.from_scipy_sparse_matrix(tfidf_matrix * tfidf_matrix.T)
scores = nx.pagerank(similarity)
scores

tops = sorted(scores.items(), key = lambda x: x[1], reverse=True)
tops
tops[:5]

print(sentlist.iloc[tops[0][0]])
print(sentlist.iloc[tops[1][0]])
print(sentlist.iloc[tops[2][0]])
topn = 5

topsent = sorted(tops[:topn])

abstract = ''
for item in topsent:
    abstract = abstract + sentlist.iloc[item[0]] + '......'

abstract[:-6]

关注
打赏
1665675218
查看更多评论
立即登录/注册

微信扫码登录

0.0422s