您当前的位置: 首页 >  搜索

IT之一小佬

暂无认证

  • 0浏览

    0关注

    1192博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

美多商城之商品(商品搜索)

IT之一小佬 发布时间:2021-07-10 22:31:46 ,浏览量:0

五、商品搜索 5.1 全文检索方案Elasticsearch

5.1.1. 全文检索和搜索引擎原理

商品搜索需求

  • 当用户在搜索框输入商品关键字后,我们要为用户提供相关的商品搜索结果。

商品搜索实现

  • 可以选择使用模糊查询like关键字实现。
  • 但是 like 关键字的效率极低。
  • 查询需要在多个字段中进行,使用 like 关键字也不方便。

全文检索方案

  • 我们引入全文检索的方案来实现商品搜索。
  • 全文检索即在指定的任意字段中进行检索查询。
  • 全文检索方案需要配合搜索引擎来实现。

搜索引擎原理

  • 搜索引擎进行全文检索时,会对数据库中的数据进行一遍预处理,单独建立起一份索引结构数据。
  • 索引结构数据类似新华字典的索引检索页,里面包含了关键词与词条的对应关系,并记录词条的位置。
  • 搜索引擎进行全文检索时,将关键字在索引数据中进行快速对比查找,进而找到数据的真实存储位置。

结论:

  • 搜索引擎建立索引结构数据,类似新华字典的索引检索页,全文检索时,关键字在索引数据中进行快速对比查找,进而找到数据的真实存储位置。
5.1.2. Elasticsearch介绍

实现全文检索的搜索引擎,首选的是Elasticsearch

  • Elasticsearch 是用 Java 实现的,开源的搜索引擎。
  • 它可以快速地储存、搜索和分析海量数据。维基百科、Stack Overflow、Github等都采用它。
  • Elasticsearch 的底层是开源库 Lucene。但是,没法直接使用 Lucene,必须自己写代码去调用它的接口。

分词说明

  • 搜索引擎在对数据构建索引时,需要进行分词处理。
  • 分词是指将一句话拆解成多个单字 或 词,这些字或词便是这句话的关键词。
  • 比如:我是中国人
    • 分词后:中国等等都可以是这句话的关键字。
  • Elasticsearch 不支持对中文进行分词建立索引,需要配合扩展elasticsearch-analysis-ik来实现中文分词处理。
5.1.3. 使用Docker安装Elasticsearch

1.获取Elasticsearch-ik镜像

# 方法一:从仓库拉取镜像
$ sudo docker image pull delron/elasticsearch-ik:2.4.6-1.0
# 方法二:解压资料中本地镜像
$ sudo docker load -i elasticsearch-ik-2.4.6_docker.tar

2.配置Elasticsearch-ik

  • 将资料中的elasticsearc-2.4.6目录拷贝到home目录下。
  • 修改/home/python/elasticsearc-2.4.6/config/elasticsearch.yml第54行。
  • 更改ip地址为本机真实ip地址。

 3.使用Docker运行Elasticsearch-ik

【注意下面的文件地址路径】

$ sudo docker run -dti --name=elasticsearch --network=host -v /home/python/elasticsearch-2.4.6/config:/usr/share/elasticsearch/config delron/elasticsearch-ik:2.4.6-1.0

5.2 Haystack扩展建立索引

提示:

  • Elasticsearch 的底层是开源库 Lucene。但是没法直接使用 Lucene,必须自己写代码去调用它的接口。

思考:

  • 我们如何对接 Elasticsearch服务端?

解决方案:

  • Haystack
5.2.1. Haystack介绍和安装配置

1.Haystack介绍   【兼容性比较好】 

  • Haystack 是在Django中对接搜索引擎的框架,搭建了用户和搜索引擎之间的沟通桥梁。
    • 我们在Django中可以通过使用 Haystack 来调用 Elasticsearch 搜索引擎。
  • Haystack 可以在不修改代码的情况下使用不同的搜索后端(比如 ElasticsearchWhooshSolr等等)。

2.Haystack安装

$ pip install django-haystack
$ pip install elasticsearch==2.4.1

3.Haystack注册应用和路由

INSTALLED_APPS = [
    'haystack', # 全文检索
]

url(r'^search/', include('haystack.urls')),

4.Haystack配置

  • 在配置文件中配置Haystack为搜索引擎后端
# Haystack
HAYSTACK_CONNECTIONS = {
    'default': {
        'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine',
        'URL': 'http://192.168.103.158:9200/', # Elasticsearch服务器ip地址,端口号固定为9200
        'INDEX_NAME': 'meiduo_mall', # Elasticsearch建立的索引库的名称
    },
}

# 当添加、修改、删除数据时,自动生成索引
HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'

重要提示:

  • HAYSTACK_SIGNAL_PROCESSOR 配置项保证了在Django运行起来后,有新的数据产生时,Haystack仍然可以让Elasticsearch实时生成新数据的索引
5.2.2. Haystack建立数据索引

1.创建索引类

  • 通过创建索引类,来指明让搜索引擎对哪些字段建立索引,也就是可以通过哪些字段的关键字来检索数据。
  • 本项目中对SKU信息进行全文检索,所以在goods应用中新建search_indexes.py文件,用于存放索引类。【必须用这个名:search_indexes.py
from haystack import indexes

from .models import SKU


class SKUIndex(indexes.SearchIndex, indexes.Indexable):
    """SKU索引数据模型类"""
    text = indexes.CharField(document=True, use_template=True)

    def get_model(self):
        """返回建立索引的模型类"""
        return SKU

    def index_queryset(self, using=None):
        """返回要建立索引的数据查询集"""
        return self.get_model().objects.filter(is_launched=True)

  • 索引类SKUIndex说明:
    • SKUIndex建立的字段,都可以借助HaystackElasticsearch搜索引擎查询。
    • 其中text字段我们声明为document=True,表名该字段是主要进行关键字查询的字段。
    • text字段的索引值可以由多个数据库模型类字段组成,具体由哪些模型类字段组成,我们用use_template=True表示后续通过模板来指明。

2.创建text字段索引值模板文件

  • templates目录中创建text字段使用的模板文件
  • 具体在templates/search/indexes/goods/sku_text.txt文件中定义【新建这些文件夹,名字不能变】
{{ object.id }}
{{ object.name }}
{{ object.caption }}
  • 模板文件说明:当将关键词通过text参数名传递时
    • 此模板指明SKU的idnamecaption作为text字段的索引值来进行关键字索引查询。

3.手动生成初始索引

$ python manage.py rebuild_index

  这儿可能会出现这个错误:

解决办法:

 此处另外可能出现的问题:可能是Dockers中的elasticsearch运行出错,删除重新运行

5.2.3. 全文检索测试

1.准备测试表单

  • 请求方法:GET
  • 请求地址:/search/
  • 请求参数:q

  • 索尼微单
  • 优惠15元
  • 美妆个护
  • 买2免1

2.全文检索测试结果

结论:

  • 错误提示告诉我们在templates/search/目录中缺少一个search.html文件
  • search.html文件作用就是接收和渲染全文检索的结果。
5.3 渲染商品搜索结果 5.3.1. 准备商品搜索结果页面

5.3.2. 渲染商品搜索结果

Haystack返回的数据包括:

  • query:搜索关键字
  • paginator:分页paginator对象
  • page:当前页的page对象(遍历page中的对象,可以得到result对象)
  • result.objects: 当前遍历出来的SKU对象。
    {% for result in page %}
  • {# object取得才是sku对象 #}
关注
打赏
1665675218
查看更多评论
0.0979s