您当前的位置: 首页 >  网络

川川菜鸟

暂无认证

  • 5浏览

    0关注

    969博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

【tensorflow2.9】搭建第一个卷积网络:手写数字识别

川川菜鸟 发布时间:2022-07-14 02:51:38 ,浏览量:5

在上一篇已经搭建好了环境,这一偏先来体验一下一个简单的卷积网络。

一、手写数字识别 1.1 导入模块
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
1.2 设置数据参数
num_classes = 10 
input_shape = (28, 28, 1)
1.3 加载数据并分割
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train
1.3 图像缩放到 [0, 1]
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
1.4 确保图像大小
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("训练集大小:", x_train.shape)
print(x_train.shape[0], "训练样本")
print(x_test.shape[0], "测试样本")

输出:

训练集大小: (60000, 28, 28, 1, 1)
60000 训练样本
10000 测试样本
1.5 类向量转换为二元类矩阵
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
1.6 建立模型
model = keras.Sequential(
    [
        keras.Input(shape=input_shape),
        layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Flatten(),
        layers.Dropout(0.5),
        layers.Dense(num_classes, activation="softmax"),
    ]
)

model.summary()

输出: 在这里插入图片描述 输出的结果我们暂时不去理解。

1.7 训练模型
batch_size = 128
epochs = 15 # 训练十二轮

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # 编译

model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1) # 训练
1.8 评估模型

以loss和accucry作为指标:

score = model.evaluate(x_test, y_test, verbose=0) 
print("测试 loss:", score[0])
print("测试 accuracy:", score[1])

输出:

测试 loss: 0.02751099318265915
测试 accuracy: 0.9915000200271606
关注
打赏
1665165634
查看更多评论
立即登录/注册

微信扫码登录

0.0408s