您当前的位置: 首页 >  hadoop

梁云亮

暂无认证

  • 3浏览

    0关注

    1201博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

Hadoop 自定义序列化数据类型

梁云亮 发布时间:2019-12-05 13:14:48 ,浏览量:3

需求

流量求和:统计每一个手机号耗费的总上行流量、下行流量、总流量

输入数据
1363157985066   120.196.100.82  2481    24681    200
1363157995033   120.197.40.4      264    0    200
1363157993055   120.196.100.99    132    1512    200
1363154400022   120.197.40.4      240    0    200
1363157993044   120.196.100.99    1527    2106    200
1363157993055   120.197.40.4      4116    1432    200
1363157993055   120.196.100.99    1116    954    200
1363157995033   120.197.40.4      3156    2936    200
1363157983019   120.196.100.82    240    0    200
1363154400022   120.197.40.4      6960    690    200
1363157973098   120.197.40.4      3659    3538    200
1363157993055   120.196.100.99    1938    180    200
1363154400022   120.196.100.99    918    4938    200
1363157993055   120.197.40.4      180    180    200
1363157984040   120.197.40.4      1938    2910    200
1363157995033   120.196.100.82    3008    3720    200
1363154400022   120.196.100.99    7335    110349    200
1363157993055   120.196.100.99    9531    2412    200
1363157990043   120.196.100.55    11058    48243    200
1363157993055   120.196.100.82    120    120    200
1363157985066   120.196.100.82    2481    24681    200
1363157993055   120.196.100.99    1116    954    200
代码实现 第一步:创建一个FlowBean的实体类,实现序列化操作:
public class FlowBean implements Writable {
    private String phoneNumber;	//电话号码
    private long upFlow;	//上行流量
    private long downFlow;	//下行流量
    private long sumFlow;	//总流量
    
    // …… getter/setter、toString()方法

    public FlowBean() {//在反序列化时候,反射机制需要调用空参的构造方法
    }
    //为了对象数据的初始化方便,提供一个带参的构造方法
    public FlowBean(String phoneNumber, long upFlow, long downFlow) {
        this.phoneNumber = phoneNumber;
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }
    //从数据流中反序列出对象的数据。从数据流中读取字段时必须和序列化的顺序保持一致
    @Override
    public void readFields(DataInput in) throws IOException {
        phoneNumber = in.readUTF();
        upFlow = in.readLong();
        downFlow = in.readLong();
        sumFlow = in.readLong();
    }
    @Override
    public void write(DataOutput out) throws IOException { //将对象数据序列化到流中
        out.writeUTF(phoneNumber);
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }
}
第二步:定义Mapper类,代码如下:
public class FlowMapper extends Mapper {
    @Override
    protected void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        String line = value.toString();   //拿到一行数据
        String[] fields =  line.split("\\s+");  //切分成各个字段
        String phoneNumber = fields[1]; //手机号
        long upFlow = Long.parseLong(fields[7]);  //上行流量
        long downFlow = Long.parseLong(fields[8]); //下行流量
        //封装数据为key-value进行输出
        context.write(new Text(phoneNumber), new FlowBean(phoneNumber, upFlow, downFlow));
    }
}
第三步:定义Reducer类,代码如下:
public class FlowReducer extends Reducer {
    @Override
    protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
        long upFlowSum = 0; //上行流量计数器
        long downFlowSum = 0; //下行流量计数器
        for (FlowBean bean : values) {//上行流量和下行流量累加求和
            upFlowSum += bean.getUpFlow();
            downFlowSum += bean.getDownFlow();
        }
        //将结果输出
        context.write(key, new FlowBean(key.toString(), upFlowSum, downFlowSum));
    }
}
第四步:编写测试代码:
public class FlowDriver {

    public static void main(String[] args) throws Exception {
        // 数据输入路径和输出路径
        args = new String[2];
        args[0] = "src/main/resources/flowi";
        args[1] = "src/main/resources/flowo";

        Configuration cfg = new Configuration();// 读取配置文件
        //设置本地模式运行(即使项目类路径下core-site.xml文件,依然采用本地模式)
        cfg.set("mapreduce.framework.name", "local");
        cfg.set("fs.defaultFS", "file:///");

        Job job = Job.getInstance(cfg);// 新建一个任务

        job.setJarByClass(FlowDriver.class);  // 设置主类

        job.setInputFormatClass(TextInputFormat.class);//设置输入格式
        job.setOutputFormatClass(TextOutputFormat.class);

        //本job使用的mapper和reducer
        job.setMapperClass(FlowMapper.class);   // Mapper
        job.setReducerClass(FlowReducer.class); // Reducer

        //指定mapper输出数据的key-value类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        //指定最终输出数据的key-value类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));   // 输入路径
        FileOutputFormat.setOutputPath(job, new Path(args[1])); // 输出路径

        // 提交任务
        int res = job.waitForCompletion(true) ? 0 : 1;
        System.exit(res);
    }

}

关注
打赏
1665023148
查看更多评论
立即登录/注册

微信扫码登录

0.0938s