您当前的位置: 首页 >  3d

暂无认证

  • 1浏览

    0关注

    97405博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

RandomRooms:用于3D目标检测的无监督预训练方法(ICCV2021)

发布时间:2021-10-29 07:00:00 ,浏览量:1

论文标题:RandomRooms: Unsupervised Pre-training from Synthetic Shapes and Randomized Layouts for 3D Object Detection

论文地址:https://arxiv.org/abs/2108.07794

8594d5c55f3be3214d5499f673dd3305.png

摘要:近年来,三维点云理解取得了一定的进展。然而,一个主要的瓶颈是有注释的真实数据集的稀缺,尤其是与2D目标检测任务相比,因为对注释场景的真实扫描需要大量的人力。解决这一问题的一个方法是利用由计算机辅助设计对象模型组成的合成数据集来实现在真实数据集上的学习,上述方法可以采用预训练和微调程序实现。但是,当将在合成目标上学习的特征转移到真实世界中应用时,往往会失败。在这项工作中,研究人员提出了一种新的方法,通过利用合成计算机辅助设计数据集中的目标来生成场景的随机布局,并且通过对从同一组合成目标生成的两个随机场景应用object-level对比学习来学习3D场景表示,用于为后期微调提供更好的初始化。从经验上看,该方法在几个基本模型上的下游3D检测任务上的性能具有提升,尤其是当使用较少的训练数据时,上述结果证明了该研究方法的有效性和通用性。通过运用丰富的语义知识和合成数据的多样化对象,研究人员的方法在广泛使用的3D检测基准ScanNetV2和SUN RGB-D上获取了当前最好的性能。研究人员期望该方法有望为目标和场景级别的3D理解提供新的视角。

关注
打赏
1655516835
查看更多评论
立即登录/注册

微信扫码登录

1.1891s