任何一个可以用计算机求解的问题所需的计算时间都与其规模有关:问题的规模越小,越容易直接求解。 要想直接解决一个规模较大的问题,有时是很困难的。那么,为了更好地解决这些规模较大的问题,分治法应运而生了。 在计算机科学中,分治法是一种很重要的算法。它采取各个击破的技巧来解决一个规模较大的问题,该技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)等。话不多说,直接上案例。
目录
二分查找
问题描述
算法思想
构造实例
实现方法
1、两种非递归
2、递归算法
时间复杂度
二、合并排序
算法思想
合并方法
算法描述
非递归形式
递归形式
时间复杂度
三、快速排序
算法思想
快排分治体现
划分方法的构造实例
图示助理解
具体代码实现
运行效果
时间复杂度
结语
二分查找 问题描述二分查找又称为折半查找,它要求待查找的数据元素必须是按关键字大小有序排列的。给定已排好序的n个元素s1,…,sn,现要在这n个元素中找出一特定元素x。 首先较容易想到使用顺序查找方法,逐个比较s1,…,sn,直至找出元素x或搜索遍整个序列后确定x不在其中。显然,该方法没有很好地利用n个元素已排好序这个条件。因此,在最坏情况下,顺序查找方法需要O(n)次比较。
算法思想假定元素序列已经由小到大排好序,将有序序列分成规模大致相等的两部分,然后取中间元素与特定查找元素x进行比较,如果x等于中间元素,则算法终止;如果x小于中间元素,则在序列的左半部继续查找,即在序列的左半部重复分解和治理操作;否则,在序列的右半部继续查找,即在序列的右半部重复分解和治理操作。可见,二分查找算法重复利用了元素间的次序关系。
构造实例创建数组并随机赋值,定义low为数组左边界high为数组右边界(数组长度-1)middle为数组长度的一半。middle=(low+high)/2,即指示中间元素;我们需要通过代码来每次折半查找我们需要的元素值。
实现方法 1、两种非递归twoFind1()
int twoFind1(int A[], int len, int K)
{
int low = 0, high = len - 1,middle;
if (low > high) return -2;
while (low A[middle]) low = middle + 1;
else high = middle - 1;
}
return -1;
}
twoFind2()
int twoFind2(int A[], int len, int K)
{
int low = 0, high = len - 1,middle;
if (low > high) return -2;
while (low < high)//不含等于的情况,并在最后做判断
{
middle = (low + high) / 2;
if (K == A[middle]) return middle;
else if (K > A[middle]) low = middle + 1;
else high = middle - 1;
}
if (low == high && A[low] == K) return low;
return -1;
}
2、递归算法
//递归二分查找算法
int twoFind3(int A[], int k, int low, int high)
{
int middle;
if (low > high) return -1;//递归结束条件
middle = (low + high) / 2;
if (low==high && A[middle] == k) return middle;
if (low < high) {
if (A[middle] < k) return twoFind3(A, k, middle + 1, high);
else if(A[middle]==k) return middle;
else return twoFind3(A, k, 0, middle - 1);
}
return -1;
}
时间复杂度
合并排序是采用分治策略实现对n个元素进行排序的算法,是分治法的一个典型应用和完美体现。它是一种平衡、简单的二分分治策略,其计算过程分为三大步: (1)分解:将待排序元素分成大小大致相同的两个子序列。 (2)求解子问题:用合并排序法分别对两个子序列递归地进行排序。 (3)合并:将排好序的有序子序列进行合并,得到符合要求的有序序列。
合并方法设置三个工作指针i,j,k。其中,i和j指示两个待排序序列中当前需比较的元素,k指向辅助数组B中待放置元素的位置。比较A[i]和A[j]的大小关系,如果A[i]小于等于A[j],则B[k]=A[i],同时将指针i和k分别推进一步;反之,B[k]=A[j],同时将指针j和k分别推进一步。如此反复,直到其中一个序列为空。最后,将非空序列中的剩余元素按原次序全部放到辅助数组B的尾部。
算法描述 非递归形式void Merge(int A[],int low,int middle,int high)
{
int i,j,k;
int *B=new int[high-low+1];
i=low; j=middle+1; k=low;
while(i
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?