您当前的位置: 首页 >  数据结构

微凉秋意

暂无认证

  • 0浏览

    0关注

    110博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

<算法与数据结构>详解贪心策略之最小生成树的Prime算法的设计与实现

微凉秋意 发布时间:2022-05-19 14:48:23 ,浏览量:0

🎉情人节快乐!

🎉 没有对象就搁这儿好好学习,有对象了就为了对象好好学习

🎉写在前面

最小生成树的问题还是比较热门的,最经典的莫过于Prime算法和Kruskal算法了,这篇博文我会详细讲解Prime算法的设计思想与具体代码的实现,不要求数据结构学的有多好,只要跟着我的思路来,一步一步的分析,调试,终能成就自己,那就让我们开始吧!

🎉目录

浅析最小生成树

Prime算法思想

此算法核心部分

结构体的选择

实现思路

构造实例

构造过程 

代码详解

调试结果

总结 

浅析最小生成树

设G=(V,E)是无向连通带权图。E中每条边(v,w)的权为c[v][w]。

生成树:如果G的子图G’是一棵包含G的所有顶点的树,则称G’为G的生成树。

耗费:生成树上各边权的总和

最小生成树:在G的所有生成树中,耗费最小的生成树最小生成树在实际中有广泛应用。

例如,在设计通信网络时,用图的顶点表示城市,用边(v,w)的权c[v][w]表示建立城市v和城市w之间的通信线路所需的费用,则最小生成树就给出建立通信网络的最经济的方案。

Prime算法思想

牵扯到贪心策略

设G=(V,E)是无向连通带权图,V={1,2,…,n};

设最小生成树T=(U,TE),算法结束时U=V,TE  E。

首先,令U={u0},TE={}。然后,只要U是V的真子集,就做如下贪心选择:选取满足条件i  U,j   V-U,且边(i,j)是连接U和V-U的所有边中的最短边,即该边的权值最小。然后,将顶点j加入集合U,边(i,j)加入集合TE。继续上面的贪心选择一直进行到U=V为止,此时,选取到的所有边恰好构成G的一棵最小生成树T。需要注意的是,贪心选择这一步骤在算法中应执行多次,每执行一次,集合TE和U都将发生变化,即分别增加一条边和一个顶点。

此算法核心部分 结构体的选择

选择一个合适的数据结构可以让程序的实现效率大大提高,难度大大降低;既然是生成最小生成树,不妨选择点和边结构体;因此创建两个结构体,第一个点node结构体包含所有的结点;第二个边结构体包含所有待选择的边、连接点及权值。

实现思路

tips:onTreet 属性是布尔类型,为true时该结点在“树”上

首先对应第一个结点找我们需要的边,我们需要什么样的边呢,那就是在边的两个连接点中,有且仅有一个连结点等于结点的名称(这个可以在点结构体中加ID属性),并且这个结点必须是根结点(即onTree为true),满足这个条件,就把另一个连接点的onTree属性设为true;最后为了把满足条件的边连起来,我就个边结构体也加一个onTree属性,输出所有onTree 为true的边结构体即可。

构造实例

按Prim算法对如图所示的无向连通带权图构造一棵最小生成树。

构造过程 

 点和边结构体数组图示如上所示,我们需要的最终效果为下图所示:

代码详解
#include 
using namespace std;
struct Node {
	int ID;//结点序号
	bool OnTree;//是否属于最小生成树
};
struct LS {
	int N1, N2; int V; bool OnTree;//OnTree用于判断此边是否在“树”上
	LS(int n1, int n2, int v) {
		N1 = n1; N2 = n2; V = v; OnTree = false;//N1,N2为边左右连接点,v是边的权值
	}
};
Node A[] = { {1,false}, {2,false}, {3,false}, {4,false}, {5,false} };//点结构体数组
LS L[8] = { LS(1,2,1),LS(1,3,4) ,LS(2,3,2),
LS(2,5,2),LS(4,5,4),LS(3,4,6),LS(3,5,3),LS(1,4,8)};//边结构体数组
bool FindOne(LS L ,Node A[]) {//布尔类型
	int m = 0;
	for (int i = 0; i < 5; i++)
		if (L.N1 == A[i].ID && A[i].OnTree) m++;
	for (int i = 0; i < 5; i++)
		if (L.N2 == A[i].ID && A[i].OnTree) m++;
	return m ==1;//只有N1和N2的一个连接到了在“树”上的结点才为真
}

int main()
{
	A[0].OnTree = true;
	for (int i = 0; i < 5; i++) {
		int p = 0;
		for (int j = 0; j < 8; j++) {
			if (FindOne(L[j], A)) {
				p = j; break;
			}
		}
		for (int i = 0; i < 8; i++) {
			if (FindOne(L[i], A))
				if (L[i].V < L[p].V) p = i;
		}
		L[p].OnTree = true;//选中的边设置为在“树”上
        //将边的连接点放在“树”上
		for (int i = 0; i < 5; i++) {
			if (L[p].N1 == A[i].ID) A[i].OnTree = true;
			if (L[p].N2 == A[i].ID) A[i].OnTree = true;
		}
	}
    //输出最小生成树所有边
	for (int i = 0; i < 8; i++) {
		cout             
关注
打赏
1664596500
查看更多评论
0.0467s