ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测
目录
输出结果
数据集展示
输出结果
1、k-NN
2、LoR
4、DT
5、RF
6、GB
7、SVM
8、NN
设计思路
输出结果 数据集展示
k-NN:Accuracy of K-NN classifier on training set: 0.79 k-NN:Accuracy of K-NN classifier on test set: 0.78
2、LoR
# LoR:C1 Training set accuracy: 0.781 LoR:C1 Test set accuracy: 0.771 LoR:C100 Training set accuracy: 0.785 LoR:C100 Test set accuracy: 0.766 LoR:C001 Training set accuracy: 0.700 LoR:C001 Test set accuracy: 0.703
DT:Accuracy on training set: 1.000 DT:Accuracy on test set: 0.714 DT:Accuracy on training set: 0.773 DT:Accuracy on test set: 0.740
RF:Accuracy on training set: 1.000 RF:Accuracy on test set: 0.786 RF:max_depth=3 Accuracy on training set: 0.800 RF:max_depth=3 Accuracy on test set: 0.755





GB:Accuracy on training set: 0.917 GB:Accuracy on test set: 0.792 GB:Accuracy on training set: 0.804 GB:Accuracy on test set: 0.781 GB:Accuracy on training set: 0.802 GB:Accuracy on test set: 0.776
7、SVM
SVM:Accuracy on training set: 1.00 SVM:Accuracy on test set: 0.65 SVM:MinMaxScaler Accuracy on training set: 0.77 SVM:MinMaxScaler Accuracy on test set: 0.77 SVM:C=500 Accuracy on training set: 0.790 SVM:C=500 Accuracy on test set: 0.792 SVM:C=1000 Accuracy on training set: 0.790 SVM:C=1000 Accuracy on test set: 0.797 SVM:C=2000 Accuracy on training set: 0.800 SVM:C=2000 Accuracy on test set: 0.797
8、NN
利用多层神经网络
NN:Data standardization—Accuracy on training set: 0.823 NN:Data standardization—Accuracy on test set: 0.802 NN:Data standardization(max_iter=1000)—Accuracy on training set: 0.877 NN:Data standardization(max_iter=1000)—Accuracy on test set: 0.755 NN:Data standardization(max_iter=1000,alpha=1)—Accuracy on training set: 0.795 NN:Data standardization(max_iter=1000,alpha=1)—Accuracy on test set: 0.792
设计思路
相关文章ML之Classification:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测