您当前的位置: 首页 > 
  • 0浏览

    0关注

    2393博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

DL之RBM:基于RBM实现手写数字图片识别提高准确率

一个处女座的程序猿 发布时间:2018-06-25 19:45:21 ,浏览量:0

DL之RBM:基于RBM实现手写数字图片识别提高准确率

 

 

目录

输出结果

设计代码

 

 

 

输出结果

 

 

设计代码
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn import metrics,linear_model
from sklearn.neural_network import BernoulliRBM  
from sklearn.datasets import load_digits          
from sklearn.pipeline import Pipeline    

digits = load_digits() 
X = digits.data         
y = digits.target     

X -= X.min()   
X /= X.max()  
X_train, X_test, y_train, y_test = train_test_split(X, y)  


logistic = linear_model.LogisticRegression() 
rbm = BernoulliRBM(random_state=0, verbose=True) 
classifier = Pipeline(steps=[('rbm', rbm), ('logistic',logistic)]) 

rbm.learning_rate = 0.06  
rbm.n_iter = 20           
rbm.n_components = 200   
logistic.C = 6000.0       
classifier.fit (X_train,y_train)  

print()
print("Logistic regression using RBM features:\n%s\n"%(
    metrics.classification_report(y_test,classifier.predict(X_test)) 

 

关注
打赏
1664196048
查看更多评论
立即登录/注册

微信扫码登录

0.0522s