ML之回归预测之Lasso:利用Lasso算法解决回归(实数值评分预测)问题—采用10折交叉验证(测试集error)来评估LassoCV模型
目录
输出结果
设计思路
核心代码
输出结果
设计思路
核心代码
if t==1:
X = numpy.array(xList) #Unnormalized X's
# X = numpy.array(xNormalized) #Normlized Xss
Y = numpy.array(labels) #Unnormalized labels
# Y = numpy.array(labelNormalized) #normalized lables
elif t==2:
X = numpy.array(xList) #Unnormalized X's
X = numpy.array(xNormalized) #Normlized Xss
Y = numpy.array(labels) #Unnormalized labels
Y = numpy.array(labelNormalized) #normalized lables
elif t==3:
X = numpy.array(xList) #Unnormalized X's
X = numpy.array(xNormalized) #Normlized Xss
Y = numpy.array(labels) #Unnormalized labels
# Y = numpy.array(labelNormalized) #normalized lables