您当前的位置: 首页 > 
  • 2浏览

    0关注

    2393博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

DL之DNN优化技术:利用Dropout(简介、使用、应用)优化方法提高DNN模型的性能

一个处女座的程序猿 发布时间:2019-02-21 22:24:04 ,浏览量:2

DL之DNN优化技术:利用Dropout(简介、入门、使用)优化方法提高DNN模型的性能

 

 

 

 

 

目录

Dropout简介

Dropout使用

Dropout应用

 

 

 

 

 

 

 

 

Dropout简介

        随机失活(dropout)是对具有深度结构的人工神经网络进行优化的方法,在学习过程中通过将隐含层的部分权重或输出随机归零,降低节点间的相互依赖性(co-dependence )从而实现神经网络的正则化(regularization),降低其结构风险(structural risk)。

        在2012年,Hinton在其论文《Improving neural networks by preventing co-adaptation of feature detectors》中提出Dropout。当一个复杂的前馈神经网络被训练在小的数据集时,容易造成过拟合。为了防止过拟合,可以通过阻止特征检测器的共同作用来提高神经网络的性能。         在2012年,Alex、Hinton在其论文《ImageNet Classification with Deep Convolutional Neural Networks》中用到了Dropout算法,用于防止过拟合。并且,这篇论文提到的AlexNet网络模型引爆了神经网络应用热潮,并赢得了2012年图像识别大赛冠军,使得CNN成为图像分类上的核心算法模型。

1、左边是一般的神经网络,右边是应用了Dropout的网络。Dropout通过随机选择并删除神经元,停止向前传递信号。

 

参考文献

1、《Improving neural networks by preventing co-adaptation of feature detectors》

       Hinton G E , Srivastava N , Krizhevsky A , et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012.https://arxiv.org/pdf/1207.0580.pdf

 

 

2、《 Dropout: A simple way to prevent neural networks from overfitting》

    N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov(2014): Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, pages 1929 – 1958, 2014.

 

 

Dropout使用

后期更新……

 

 

Dropout应用

后期更新……

 

 

 

 

 

 

 

 

 

关注
打赏
1664196048
查看更多评论
立即登录/注册

微信扫码登录

0.0560s