您当前的位置: 首页 >  分类
  • 0浏览

    0关注

    2393博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

ML之Xgboost:利用Xgboost模型对数据集(比马印第安人糖尿病)进行二分类预测(5年内是否患糖尿病)

一个处女座的程序猿 发布时间:2019-03-08 23:16:38 ,浏览量:0

ML之Xgboost:利用Xgboost模型对数据集(比马印第安人糖尿病)进行二分类预测(5年内是否患糖尿病)

 

 

目录

输出结果

设计思路

核心代码

 

 

 

输出结果
X_train内容: 
[[  3.    102.     44.    ...  30.8     0.4    26.   ]
 [  1.     77.     56.    ...  33.3     1.251  24.   ]
 [  9.    124.     70.    ...  35.4     0.282  34.   ]
 ...
 [  0.     57.     60.    ...  21.7     0.735  67.   ]
 [  1.    105.     58.    ...  24.3     0.187  21.   ]
 [  8.    179.     72.    ...  32.7     0.719  36.   ]]


y_train内容: 
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 1.
 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0.
 1. 0. 0. 1. 1. 1. 0. 0. 0. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 0. 1. 0. 1. 1.
 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 0. 1. 0. 1. 1. 0. 0. 0. 0. 0.
 0. 1. 1. 0. 0. 1. 0. 0. 1. 0. 1. 1. 0. 0. 1. 1. 0. 1. 0. 0. 0. 0. 0. 1.
 0. 0. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. 0.
 0. 1. 1. 0. 0. 0. 0. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 1. 1. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0. 0. 1. 1. 1. 1. 1. 0. 1.
 0. 0. 1. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 0. 1. 1. 1. 0. 1. 0. 1. 1. 0. 0.
 0. 0. 1. 1. 0. 1. 1. 1. 0. 0. 1. 0. 1. 0. 1. 0. 0. 1. 1. 0. 1. 1. 1. 1.
 0. 0. 0. 0. 0. 1. 1. 1. 0. 1. 0. 0. 0. 0. 1. 0. 0. 1. 0. 1. 0. 0. 1. 0.
 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 1. 0. 0.
 0. 1. 1. 0. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 1. 1.
 1. 0. 0. 0. 1. 0. 0. 1. 0. 1. 0. 1. 1. 1. 0. 1. 0. 0. 1. 0. 0. 1. 0. 1.
 1. 0. 1. 0. 0. 1. 1. 1. 0. 1. 0. 1. 0. 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0.
 1. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.
 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 1.
 0. 1. 0. 0. 0. 1. 1. 0. 0. 1. 1. 0. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 1. 1. 0. 0. 0. 0. 1. 1. 1. 1. 0. 0. 1.
 1. 0. 0. 0. 1. 1. 1. 0. 0. 0. 1. 1. 0. 1. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0.
 1. 0. 1. 0. 0. 1. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 0. 1. 1.
 0. 1. 0. 0. 0. 1. 1. 0. 0. 1.]

 

 

设计思路

 

 

核心代码
class XGBClassifier Found at: xgboost.sklearn

class XGBClassifier(XGBModel, XGBClassifierBase):
    # pylint: disable=missing-docstring,too-many-arguments,invalid-name
    __doc__ = "Implementation of the scikit-learn API for XGBoost classification.\n\n" + '\n'.join
     (XGBModel.__doc__.split('\n')[2:])
    def __init__(self, max_depth=3, learning_rate=0.1, 
        n_estimators=100, silent=True, 
        objective="binary:logistic", booster='gbtree', 
        n_jobs=1, nthread=None, gamma=0, min_child_weight=1, 
        max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, 
        reg_alpha=0, reg_lambda=1, scale_pos_weight=1, 
        base_score=0.5, random_state=0, seed=None, missing=None, **kwargs):
        super(XGBClassifier, self).__init__(max_depth, learning_rate, n_estimators, silent, 
         objective, booster, n_jobs, nthread, gamma, min_child_weight, max_delta_step, subsample, 
         colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, 
         base_score, random_state, seed, missing, **kwargs)
    
    def fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None, 
        early_stopping_rounds=None, verbose=True, xgb_model=None, 
        sample_weight_eval_set=None, callbacks=
        # pylint: disable = attribute-defined-outside-init,arguments-differ
        None):
        """
        Fit gradient boosting classifier

        Parameters
        ----------
        X : array_like
            Feature matrix
        y : array_like
            Labels
        sample_weight : array_like
            Weight for each instance
        eval_set : list, optional
            A list of (X, y) pairs to use as a validation set for
            early-stopping
        sample_weight_eval_set : list, optional
            A list of the form [L_1, L_2, ..., L_n], where each L_i is a list of
            instance weights on the i-th validation set.
        eval_metric : str, callable, optional
            If a str, should be a built-in evaluation metric to use. See
            doc/parameter.rst. If callable, a custom evaluation metric. The call
            signature is func(y_predicted, y_true) where y_true will be a
            DMatrix object such that you may need to call the get_label
            method. It must return a str, value pair where the str is a name
            for the evaluation and value is the value of the evaluation
            function. This objective is always minimized.
        early_stopping_rounds : int, optional
            Activates early stopping. Validation error needs to decrease at
            least every  round(s) to continue training.
            Requires at least one item in evals. If there's more than one,
            will use the last. If early stopping occurs, the model will have
            three additional fields: bst.best_score, bst.best_iteration and
            bst.best_ntree_limit (bst.best_ntree_limit is the ntree_limit parameter
            default value in predict method if not any other value is specified).
            (Use bst.best_ntree_limit to get the correct value if num_parallel_tree
            and/or num_class appears in the parameters)
        verbose : bool
            If `verbose` and an evaluation set is used, writes the evaluation
            metric measured on the validation set to stderr.
        xgb_model : str
            file name of stored xgb model or 'Booster' instance Xgb model to be
            loaded before training (allows training continuation).
        callbacks : list of callback functions
            List of callback functions that are applied at end of each iteration.
            It is possible to use predefined callbacks by using :ref:`callback_api`.
            Example:

            .. code-block:: python

                [xgb.callback.reset_learning_rate(custom_rates)]
        """
        evals_result = {}
        self.classes_ = np.unique(y)
        self.n_classes_ = len(self.classes_)
        xgb_options = self.get_xgb_params()
        if callable(self.objective):
            obj = _objective_decorator(self.objective)
        # Use default value. Is it really not used ?
            xgb_options["objective"] = "binary:logistic"
        else:
            obj = None
        if self.n_classes_ > 2:
        # Switch to using a multiclass objective in the underlying XGB instance
            xgb_options["objective"] = "multi:softprob"
            xgb_options['num_class'] = self.n_classes_
        feval = eval_metric if callable(eval_metric) else None
        if eval_metric is not None:
            if callable(eval_metric):
                eval_metric = None
            else:
                xgb_options.update({"eval_metric":eval_metric})
        self._le = XGBLabelEncoder().fit(y)
        training_labels = self._le.transform(y)
        if eval_set is not None:
            if sample_weight_eval_set is None:
                sample_weight_eval_set = [None] * len(eval_set)
            evals = list(
                DMatrix(eval_set[i][0], label=self._le.transform(eval_set[i][1]), 
                    missing=self.missing, weight=sample_weight_eval_set[i], 
                    nthread=self.n_jobs) for 
                i in range(len(eval_set)))
            nevals = len(evals)
            eval_names = ["validation_{}".format(i) for i in range(nevals)]
            evals = list(zip(evals, eval_names))
        else:
            evals = ()
        self._features_count = X.shape[1]
        if sample_weight is not None:
            train_dmatrix = DMatrix(X, label=training_labels, weight=sample_weight, 
                missing=self.missing, nthread=self.n_jobs)
        else:
            train_dmatrix = DMatrix(X, label=training_labels, 
                missing=self.missing, nthread=self.n_jobs)
        self._Booster = train(xgb_options, train_dmatrix, self.n_estimators, 
            evals=evals, 
            early_stopping_rounds=early_stopping_rounds, 
            evals_result=evals_result, obj=obj, feval=feval, 
            verbose_eval=verbose, xgb_model=xgb_model, 
            callbacks=callbacks)
        self.objective = xgb_options["objective"]
        if evals_result:
            for val in evals_result.items():
                evals_result_key = list(val[1].keys())[0]
                evals_result[val[0]][evals_result_key] = val[1][evals_result_key]
            
            self.evals_result_ = evals_result
        if early_stopping_rounds is not None:
            self.best_score = self._Booster.best_score
            self.best_iteration = self._Booster.best_iteration
            self.best_ntree_limit = self._Booster.best_ntree_limit
        return self
    
    def predict(self, data, output_margin=False, ntree_limit=None, validate_features=True):
        """
        Predict with `data`.

        .. note:: This function is not thread safe.

          For each booster object, predict can only be called from one thread.
          If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies
          of model object and then call ``predict()``.

        .. note:: Using ``predict()`` with DART booster

          If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only
          some of the trees will be evaluated. This will produce incorrect results if ``data`` is
          not the training data. To obtain correct results on test sets, set ``ntree_limit`` to
          a nonzero value, e.g.

          .. code-block:: python

            preds = bst.predict(dtest, ntree_limit=num_round)

        Parameters
        ----------
        data : DMatrix
            The dmatrix storing the input.
        output_margin : bool
            Whether to output the raw untransformed margin value.
        ntree_limit : int
            Limit number of trees in the prediction; defaults to best_ntree_limit if defined
            (i.e. it has been trained with early stopping), otherwise 0 (use all trees).
        validate_features : bool
            When this is True, validate that the Booster's and data's feature_names are identical.
            Otherwise, it is assumed that the feature_names are the same.
        Returns
        -------
        prediction : numpy array
        """
        test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
        if ntree_limit is None:
            ntree_limit = getattr(self, "best_ntree_limit", 0)
        class_probs = self.get_booster().predict(test_dmatrix, 
            output_margin=output_margin, 
            ntree_limit=ntree_limit, 
            validate_features=validate_features)
        if output_margin:
            # If output_margin is active, simply return the scores
            return class_probs
        if len(class_probs.shape) > 1:
            column_indexes = np.argmax(class_probs, axis=1)
        else:
            column_indexes = np.repeat(0, class_probs.shape[0])
            column_indexes[class_probs > 0.5] = 1
        return self._le.inverse_transform(column_indexes)
    
    def predict_proba(self, data, ntree_limit=None, validate_features=True):
        """
        Predict the probability of each `data` example being of a given class.

        .. note:: This function is not thread safe

            For each booster object, predict can only be called from one thread.
            If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies
            of model object and then call predict

        Parameters
        ----------
        data : DMatrix
            The dmatrix storing the input.
        ntree_limit : int
            Limit number of trees in the prediction; defaults to best_ntree_limit if defined
            (i.e. it has been trained with early stopping), otherwise 0 (use all trees).
        validate_features : bool
            When this is True, validate that the Booster's and data's feature_names are identical.
            Otherwise, it is assumed that the feature_names are the same.

        Returns
        -------
        prediction : numpy array
            a numpy array with the probability of each data example being of a given class.
        """
        test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs)
        if ntree_limit is None:
            ntree_limit = getattr(self, "best_ntree_limit", 0)
        class_probs = self.get_booster().predict(test_dmatrix, 
            ntree_limit=ntree_limit, 
            validate_features=validate_features)
        if self.objective == "multi:softprob":
            return class_probs
        else:
            classone_probs = class_probs
            classzero_probs = 1.0 - classone_probs
            return np.vstack((classzero_probs, classone_probs)).transpose()
    
    def evals_result(self):
        """Return the evaluation results.

        If **eval_set** is passed to the `fit` function, you can call
        ``evals_result()`` to get evaluation results for all passed **eval_sets**.
        When **eval_metric** is also passed to the `fit` function, the
        **evals_result** will contain the **eval_metrics** passed to the `fit` function.

        Returns
        -------
        evals_result : dictionary

        Example
        -------

        .. code-block:: python

            param_dist = {'objective':'binary:logistic', 'n_estimators':2}

            clf = xgb.XGBClassifier(**param_dist)

            clf.fit(X_train, y_train,
                    eval_set=[(X_train, y_train), (X_test, y_test)],
                    eval_metric='logloss',
                    verbose=True)

            evals_result = clf.evals_result()

        The variable **evals_result** will contain

        .. code-block:: python

            {'validation_0': {'logloss': ['0.604835', '0.531479']},
            'validation_1': {'logloss': ['0.41965', '0.17686']}}
        """
        if self.evals_result_:
            evals_result = self.evals_result_
        else:
            raise XGBoostError('No results.')
        return evals_result

 

 

关注
打赏
1664196048
查看更多评论
立即登录/注册

微信扫码登录

0.0645s