ML之回归预测:利用九大类机器学习算法对无人驾驶汽车系统参数(2018年的data,18+2)进行回归预测值VS真实值
相关文章ML之回归预测:利用九大类机器学习算法对无人驾驶汽车系统参数(2018年的data,18+2)进行回归预测值VS真实值
目录
输出结果
核心代码
输出结果
数据的初步查验:输出回归目标值的差异
The max target value is PeakNonedb 89
dtype: int64
The min target value is PeakNonedb 56
dtype: int64
The average target value is PeakNonedb 63.392157
dtype: float64
X_test进行归一化:
[[-0.9491207 -1.77209939 -0.79948391 -1.43561411 -1.57260903 -1.40726549
-1.45642384 -1.48633439 -1.3001131 -1.39201745 -1.43714071 -2.7383659
-0.94919765 -0.73005097 0. -0.49383335 -0.65675347]
[-0.75177877 -1.77498304 -0.79948391 -1.23709687 -1.34056255 -1.34617547
-1.2643713 -1.28972931 -1.09785003 -1.17393121 -1.22164307 -2.31661538
-1.14197474 -1.03125079 0. -0.49383335 -0.64970028]
[-0.55443684 -1.77209939 -0.79948391 -0.86678588 -0.91216904 -0.97963535
-0.8962706 -0.92109479 -0.64443991 -0.73819491 -0.80934977 -1.47311433
-1.14197474 -1.3324506 0. -0.50137443 -0.64970028]
[-0.35709492 -1.77498304 -0.79948391 -0.50029252 -0.49270039 -0.50757609
-0.53350469 -0.55491783 -0.21524754 -0.30289478 -0.41108294 -0.41873802
-1.33475182 -1.3324506 0. -0.52399769 -0.65675347]
[-0.15975299 -1.48373433 -0.79948391 -1.18746756 -1.28255093 -1.30452318
-1.21102337 -1.23074779 -1.08349877 -1.17436739 -1.22546848 -2.31661538
-0.17808931 -0.27825126 0. -0.49383335 -0.62854068]
[ 0.03758894 -1.48373433 -0.79948391 -0.82479185 -0.86308228 -1.01295718
-0.85625965 -0.86702839 -0.66731223 -0.73863108 -0.80934977 -1.3676767
-0.94919765 -0.88065088 0. -0.49383335 -0.64264708]
[ 0.23493087 -1.48373433 -0.79948391 -0.48502196 -0.47485066 -0.46592381
-0.51483291 -0.51313925 -0.22690794 -0.30333095 -0.40938276 -0.20786276
-1.14197474 -1.18185069 0. -0.49383335 -0.62854068]
[-0.9491207 -0.04479271 0.07932705 -0.58809822 -0.5774866 -0.51312973
-0.58952001 -0.63847499 -0.2179384 -0.30289478 -0.40640745 -0.20786276
-1.52752891 -1.78425032 0. -0.48629226 -0.61443429]
[-0.75177877 -0.04190905 0.07932705 -0.59191586 -0.58641147 -0.52979065
-0.59218741 -0.62127205 -0.21659297 -0.30333095 -0.40895772 -0.41873802
-1.52752891 -1.63365041 0. -0.49383335 -0.62854068]
[-0.55443684 -0.04190905 0.07932705 -0.59191586 -0.58641147 -0.5381211
-0.5975222 -0.60652667 -0.22466556 -0.30333095 -0.40768258 -0.41873802
-1.52752891 -1.63365041 0. -0.49383335 -0.62148748]
[-0.35709492 -0.04479271 0.07932705 -0.54610419 -0.51501255 -0.48536154
-0.55484386 -0.55000271 -0.22825337 -0.30333095 -0.40853267 -0.31330039
-1.33475182 -1.3324506 0. -0.49383335 -0.62148748]
[-0.15975299 -0.04767636 0.07932705 -0.50411016 -0.47038823 -0.51312973
-0.51216551 -0.5573754 -0.20941734 -0.30333095 -0.41405825 -0.20786276
-1.14197474 -1.3324506 0. -0.48629226 -0.62148748]]
各个模型结果
LiRLiR:The value of default measurement of LiR is 0.5231458055883889 LiR:R-squared value of DecisionTreeRegressor: 0.5231458055883889 LiR:测试141~153行数据, [[56.63220089] [58.94184439] [59.10056518] [56.54114422] [60.11923295] [60.81269213] [57.55507446] [61.38670841] [61.58889402] [61.77824699] [61.18940628] [62.06650565]]kNNkNNR_uni:The value of default measurement of kNNR_uni is 0.5866024699259602 kNNR_uni:R-squared value of DecisionTreeRegressor: 0.5866024699259602 kNNR_uni:测试141~153行数据, [[59.4] [59.4] [59. ] [58.4] [60. ] [59.2] [58.4] [64. ] [64. ] [63.4] [64. ] [62.4]]
kNNR_dis:The value of default measurement of kNNR_dis is 0.6601811947182363 kNNR_dis:R-squared value of DecisionTreeRegressor: 0.6601811947182363 kNNR_dis:测试141~153行数据, [[59.45759031] [59.42810453] [58.6914726 ] [58.22296918] [59.88108538] [59.00540794] [58.31774397] [64.07716708] [64.06438322] [63.6972427 ] [63.99225839] [62.52719181]]
SVMlinear_SVR:The value of default measurement of linear_SVR is 0.1743724332386528 linear_SVR:R-squared value of DecisionTreeRegressor: 0.1743724332386528 linear_SVR:测试141~153行数据, [59.55435497 59.69256353 59.48594623 58.7893093 59.85519382 59.63084943 58.78629636 60.93419466 61.09773299 61.11689926 60.99255187 61.03568282]
poly_SVR:The value of default measurement of poly_SVR is 0.23998631177335328 poly_SVR:R-squared value of DecisionTreeRegressor: 0.23998631177335328 poly_SVR:测试141~153行数据, [58.88092402 59.14921323 59.66463047 60.04552501 59.70864622 59.94978874 60.25534603 60.45124799 60.52748458 60.57400671 60.58719271 60.58516079]
rbf_SVR:The value of default measurement of rbf_SVR is 0.04812627724989971 rbf_SVR:R-squared value of DecisionTreeRegressor: 0.04812627724989971 rbf_SVR:测试141~153行数据, [60.1701123 60.06532389 60.0374718 60.18953708 60.12628982 59.94386044 60.04551404 61.1878686 61.04114038 60.99813177 60.77741395 60.6847975 ]
DTDTR:The value of default measurement of DTR is 0.4428265960696466 DTR:R-squared value of DecisionTreeRegressor: 0.4428265960696466 DTR:测试141~153行数据, [60. 58. 62. 64. 58. 62. 56. 65. 64. 57. 56. 64.]RFRFR:The value of default measurement of RFR is 0.7295335069166653 RFR:R-squared value of DecisionTreeRegressor: 0.7295335069166653 RFR:测试141~153行数据 [59.2 60.53333333 60.26666667 62.46666667 60.2 59.86666667 59.8 64.46666667 64.33333333 61.6 60.33333333 63.2 ]ETRETR:The value of default measurement of ETR is 0.762766666181797 ETR:R-squared value of DecisionTreeRegressor: 0.762766666181797 ETR:测试141~153行数据 [59.1 59.3 59.2 60.3 61.1 59.1 59.7 63.5 63. 62.8 61.8 62.2]GB/GDSGDR:The value of default measurement of SGDR is -4.233646688626224 SGDR:R-squared value of DecisionTreeRegressor: -4.233646688626224 SGDR:测试141~153行数据 [46.0143165 45.57959739 44.68507644 43.85567515 46.40920755 45.41266318 44.09993622 45.84313973 46.28048918 46.31355335 46.49699207 46.34137258]
GBR:The value of default measurement of GBR is 0.635820912452143 GBR:R-squared value of DecisionTreeRegressor: 0.635820912452143 GBR:测试141~153行数据 [58.24846635 58.03767496 58.93168378 62.60456119 58.52581388 58.46728317 59.64879765 64.43689168 62.95990227 59.72812037 60.00259156 63.0985046 ]
LGB[LightGBM] [Warning] feature_fraction is set=0.6, colsample_bytree=1.0 will be ignored. Current value: feature_fraction=0.6 [LightGBM] [Warning] min_data_in_leaf is set=18, min_child_samples=20 will be ignored. Current value: min_data_in_leaf=18 [LightGBM] [Warning] min_sum_hessian_in_leaf is set=0.001, min_child_weight=0.001 will be ignored. Current value: min_sum_hessian_in_leaf=0.001 [LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7
LGB:The value of default measurement of LGB is 0.7127670905333733 LGB:R-squared value of DecisionTreeRegressor: 0.7127670905333733 LGB:测试141~153行数据 [59.59918175 59.59918175 59.00311914 61.18846478 56.78311139 60.21894816 58.94408217 62.11993132 63.35024497 60.31777442 59.62890793 61.96502674]
核心代码
后期更新……