TF之DNN:TF利用简单7个神经元的三层全连接神经网络实现降低损失到0.000以下(输入、隐藏、输出层分别为 2、3 、 2 个神经元)
目录
输出结果
实现代码
输出结果
实现代码
# -*- coding: utf-8 -*-
import tensorflow as tf
import os
import numpy as np
#TF:TF实现简单的三层全连接神经网络(输入、隐藏、输出层分别为 2、3 、 2 个神经元)
#隐藏层和输出层的激活函数使用的是 ReLU 函数。该模型训练的样本总数为 512,每次迭代读取的批量为 10。全连接网络以交叉熵为损失函数,并使用 Adam 优化算法进行权重更新。
import tensorflow as tf
from numpy.random import RandomState
batch_size= 10
w1=tf. Variable (tf.random_normal([ 2 , 3 ],stddev= 1 ,seed= 1 ))
w2=tf. Variable (tf.random_normal([ 3 , 1 ],stddev= 1 ,seed= 1 ))
# None 可以根据batch 大小确定维度,在shape的一个维度上使用None
x=tf.placeholder(tf.float32,shape=( None , 2 ))
y=tf.placeholder(tf.float32,shape=( None , 1 ))
#激活函数使用ReLU
a=tf.nn.relu(tf.matmul(x,w1))
yhat=tf.nn.relu(tf.matmul(a,w2))
#定义交叉熵为损失函数,训练过程使用Adam算法最小化交叉熵
cross_entropy=-tf.reduce_mean(y*tf.log(tf.clip_by_value(yhat, 1e-10 , 1.0 )))
train_step=tf.train. AdamOptimizer ( 0.001 ).minimize(cross_entropy)
#tf.train.AdamOptimizer(learning_rate).minimize(cost_function) 是进行训练的函数,其中我们采用的是 Adam 优化算法更新权重,并且需要提供学习速率和损失函数这两个参数。
rdm= RandomState ( 1 )
data_size= 516
#生成两个特征,共data_size个样本
X=rdm.rand(data_size, 2 )#X=rdm.rand(512,2) 表示随机生成 512 个样本,每个样本有两个特征值。
#定义规则给出样本标签,所有x1+x2
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?