ML之sklearn:sklearn.linear_mode中的LogisticRegression函数的简介、使用方法之详细攻略
目录
sklearn.linear_mode中的LogisticRegression函数的简介、使用方法
sklearn.linear_mode中的LogisticRegression函数的简介、使用方法
class LogisticRegression Found at: sklearn.linear_model._logisticclass LogisticRegression(BaseEstimator, LinearClassifierMixin, SparseCoefMixin): """ Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.) This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag', 'saga' and 'lbfgs' solvers. **Note that regularization is applied by default**. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation, or no regularization. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only supported by the 'saga' solver. Read more in the :ref:`User Guide `.
逻辑回归(又名logit, MaxEnt)分类器。 在多类情况下,如果“multi_class”选项设置为“OvR”,训练算法使用one vs-rest (OvR)方案,如果“multi_class”选项设置为“多项”,训练算法使用交叉熵损失。(目前,“多项”选项仅由“lbfgs”、“sag”、“saga”和“newton-cg”求解器支持。)
这个类使用“liblinear”库、“newton-cg”、“sag”、“saga”和“lbfgs”求解器实现正则逻辑回归。**注意正则化是在默认情况下应用的**。它可以处理稠密和稀疏输入。使用C-ordered数组或包含64位浮点数的CSR矩阵,以获得最佳性能;任何其他输入格式都将被转换(和复制)。“newton-cg”、“sag”和“lbfgs”求解器只支持使用原始公式的L2正则化,或者不支持正则化。“liblinear”求解器支持L1和L2正则化,只有L2惩罚的对偶公式。弹性网正则化仅由“saga”求解器支持。 详见:ref: ' User Guide '。
Parameters ---------- penalty : {'l1', 'l2', 'elasticnet', 'none'}, default='l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is only supported by the 'saga' solver. If 'none' (not supported by the liblinear solver), no regularization is applied. .. versionadded:: 0.19 l1 penalty with SAGA solver (allowing 'multinomial' + L1) dual : bool, default=False Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. tol : float, default=1e-4 Tolerance for stopping criteria. C : float, default=1.0 Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default=True Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. intercept_scaling : float, default=1 Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equal to intercept_scaling is appended to the instance vector.The intercept becomes ``intercept_scaling * synthetic_feature_weight``. Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : dict or 'balanced', default=None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. .. versionadded:: 0.17 *class_weight='balanced'* random_state : int, RandomState instance, default=None Used when ``solver`` == 'sag', 'saga' or 'liblinear' to shuffle the data. See :term:`Glossary ` for details. solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, \ default='lbfgs' Algorithm to use in the optimization problem. - For small datasets, 'liblinear' is a good choice, whereas 'sag' and 'saga' are faster for large ones. - For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs' handle multinomial loss; 'liblinear' is limited to one-versus-rest schemes. - 'newton-cg', 'lbfgs', 'sag' and 'saga' handle L2 or no penalty - 'liblinear' and 'saga' also handle L1 penalty - 'saga' also supports 'elasticnet' penalty - 'liblinear' does not support setting ``penalty='none'`` Note that 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing.参数 --------- 处罚:{l1, l2,‘elasticnet’,‘没有’},默认=“l2” 用于指定在处罚中使用的规范。“newton-cg”,“sag”和“lbfgs”求解器只支持l2惩罚。“elasticnet”仅由“saga”求解器支持。如果“none”(liblinear求解器不支持),则不应用正则化。 . .versionadded:: 0.19 l1惩罚与SAGA求解器(允许“多项”+ l1) bool,默认=False 双重或原始配方。对偶公式仅适用于l2罚用线性求解器。当n_samples > n_features时,preferred dual=False。 tol:浮动,默认=1e-4 停止标准的容忍度。 C: float, default=1.0正则化强度的逆;必须是正浮点数。与支持向量机一样,值越小,正则化越强。 fit_intercept: bool,默认=True 指定一个常数(即偏差或拦截)是否应该添加到决策函数中。 intercept_scaling:浮动,默认=1 只有在使用“liblinear”求解器和self时才有用。fit_intercept设置为True。在这种情况下,x变成[x, self。intercept_scaling],即。一个常数值等于intercept_scaling的“合成”特性被附加到实例向量中。拦截变成' ' intercept_scaling * synthetic_feature_weight ' '。 注意!合成特征权重与所有其他特征一样,采用l1/l2正则化。为了减少正则化对合成特征权重的影响(因此对拦截的影响),必须增加intercept_scaling。 class_weight: dict或'balanced',默认为None 以' ' {class_label: weight} ' ' '形式关联类的权重。如果没有给出,所有类的权重都应该是1。 “平衡”模式使用y的值自动调整权重与输入数据中的类频率成反比,如' ' n_samples / (n_classes * np.bincount(y)) ' '。 注意,如果指定了sample_weight,那么这些权重将与sample_weight相乘(通过fit方法传递)。 . .versionadded:: 0.17 * class_weight = '平衡' * random_state: int, RandomState instance, default=None,当' ' solver ' ' = 'sag', 'saga'或'liblinear'洗发数据时使用。详见:term: ' Glossary '。 解决:{‘newton-cg’,‘lbfgs’,‘liblinear’,“凹陷”,“传奇”},\默认=“lbfgs” 算法用于优化问题。 对于小数据集,“liblinear”是一个不错的选择,而“sag”和“saga”对于大数据集更快。 -对于多类问题,只有“newton-cg”、“sag”、“saga”和“lbfgs”处理多项损失;“liblinear”仅限于“一对二”方案。 - 'newton-cg', 'lbfgs', 'sag'和'saga'处理L2或没有处罚 -“liblinear”和“saga”也可以处理L1惩罚 -《英雄传奇》也支持《弹性网》的惩罚 - 'liblinear'不支持设置' ' penalty='none' ' ' 请注意,“sag”和“saga”的快速收敛只能保证在大致相同规模的特性上。您可以使用sklearn.preprocessing中的scaler对数据进行预处理。.. versionadded:: 0.17 Stochastic Average Gradient descent solver. .. versionadded:: 0.19 SAGA solver. .. versionchanged:: 0.22 The default solver changed from 'liblinear' to 'lbfgs' in 0.22. max_iter : int, default=100 Maximum number of iterations taken for the solvers to converge. multi_class : {'auto', 'ovr', 'multinomial'}, default='auto' If the option chosen is 'ovr', then a binary problem is fit for each label. For 'multinomial' the loss minimised is the multinomial loss fit across the entire probability distribution, *even when the data is binary*. 'multinomial' is unavailable when solver='liblinear'. 'auto' selects 'ovr' if the data is binary, or if solver='liblinear', and otherwise selects 'multinomial'. .. versionadded:: 0.18 Stochastic Average Gradient descent solver for 'multinomial' case. .. versionchanged:: 0.22 Default changed from 'ovr' to 'auto' in 0.22. verbose : int, default=0 For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. warm_start : bool, default=False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Useless for liblinear solver. See :term:`the Glossary `. .. versionadded:: 0.17 *warm_start* to support *lbfgs*, *newton-cg*, *sag*, *saga* solvers. n_jobs : int, default=None Number of CPU cores used when parallelizing over classes if multi_class='ovr'". This parameter is ignored when the ``solver`` is set to 'liblinear' regardless of whether 'multi_class' is specified or not. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary ` for more details. l1_ratio : float, default=None The Elastic-Net mixing parameter, with ``0 1): raise ValueError( "l1_ratio must be between 0 and 1;" " got (l1_ratio=%r)" % self.l1_ratio) elif self.l1_ratio is not None: warnings.warn("l1_ratio parameter is only used when penalty is " "'elasticnet'. Got " "(penalty={})". format(self.penalty)) if self.penalty == 'none': if self.C != 1.0: # default values warnings.warn("Setting penalty='none' will ignore the C and l1_ratio " "parameters") # Note that check for l1_ratio is done right above C_ = np.inf penalty = 'l2' else: C_ = self.C penalty = self.penalty if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) if solver == 'lbfgs': _dtype = np.float64 else: _dtype = [np.float64, np.float32] X, y = self._validate_data(X, y, accept_sparse='csr', dtype=_dtype, order="C", accept_large_sparse=solver != 'liblinear') check_classification_targets(y) self.classes_ = np.unique(y) multi_class = _check_multi_class(self.multi_class, solver, len(self.classes_)) if solver == 'liblinear': if effective_n_jobs(self.n_jobs) != 1: warnings.warn("'n_jobs' > 1 does not have any effect when" " 'solver' is set to 'liblinear'. Got 'n_jobs'" " = {}.". format(effective_n_jobs(self.n_jobs))) self.coef_, self.intercept_, n_iter_ = _fit_liblinear(X, y, self.C, self. fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self. dual, self.verbose, self.max_iter, self.tol, self.random_state, sample_weight=sample_weight) self.n_iter_ = np.array([n_iter_]) return self if solver in ['sag', 'saga']: max_squared_sum = row_norms(X, squared=True).max() else: max_squared_sum = None n_classes = len(self.classes_) classes_ = self.classes_ if n_classes < 2: raise ValueError( "This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) if len(self.classes_) == 2: n_classes = 1 classes_ = classes_[1:] if self.warm_start: warm_start_coef = getattr(self, 'coef_', None) else: warm_start_coef = None if warm_start_coef is not None and self.fit_intercept: warm_start_coef = np.append(warm_start_coef, self.intercept_[:np.newaxis], axis=1) self.coef_ = list() self.intercept_ = np.zeros(n_classes) # Hack so that we iterate only once for the multinomial case. if multi_class == 'multinomial': classes_ = [None] warm_start_coef = [warm_start_coef] if warm_start_coef is None: warm_start_coef = [None] * n_classes path_func = delayed(_logistic_regression_path) # The SAG solver releases the GIL so it's more efficient to use # threads for this solver. if solver in ['sag', 'saga']: prefer = 'threads' else: prefer = 'processes' fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, ** _joblib_parallel_args(prefer=prefer))( path_func(X, y, pos_class=class_, Cs=[C_], l1_ratio=self.l1_ratio, fit_intercept=self.fit_intercept, tol=self.tol, verbose=self.verbose, solver=solver, multi_class=multi_class, max_iter=self.max_iter, class_weight=self.class_weight, check_input=False, random_state=self.random_state, coef=warm_start_coef_, penalty=penalty, max_squared_sum=max_squared_sum, sample_weight=sample_weight) for (class_, warm_start_coef_) in zip(classes_, warm_start_coef)) fold_coefs_, _, n_iter_ = zip(*fold_coefs_) self.n_iter_ = np.asarray(n_iter_, dtype=np.int32)[:0] n_features = X.shape[1] if multi_class == 'multinomial': self.coef_ = fold_coefs_[0][0] else: self.coef_ = np.asarray(fold_coefs_) self.coef_ = self.coef_.reshape(n_classes, n_features + int(self.fit_intercept)) if self.fit_intercept: self.intercept_ = self.coef_[:-1] self.coef_ = self.coef_[::-1] return self def predict_proba(self, X): """ Probability estimates.
The returned estimates for all classes are ordered by the label of classes. For a multi_class problem, if multi_class is set to be "multinomial" the softmax function is used to find the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of each class assuming it to be positive using the logistic function. and normalize these values across all the classes.
Parameters ---------- X : array-like of shape (n_samples, n_features) Vector to be scored, where `n_samples` is the number of samples and `n_features` is the number of features.
Returns ------- T : array-like of shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ check_is_fitted(self) ovr = self.multi_class in ["ovr", "warn"] or (self.multi_class == 'auto' and (self.classes_.size
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?