Python:wordcloud.wordcloud()函数的参数解析及其说明
目录
wordcloud.wordcloud()函数的参数解析及其说明
wordcloud.wordcloud()函数的参数解析及其说明
class WordCloud Found at: wordcloud.wordcloudclass WordCloud(object): """Word cloud object for generating and drawing. Parameters ---------- font_path: string Font path to the font that will be used (OTF or TTF). Defaults to DroidSansMono path on a Linux machine. If you are on another OS or don't have this font, you need to adjust this path. width : int (default=400) Width of the canvas. height : int (default=200) Height of the canvas. prefer_horizontal : float (default=0.90) The ratio of times to try horizontal fitting as opposed to vertical. If prefer_horizontal < 1, the algorithm will try rotating the word if it doesn't fit. (There is currently no built-in way to get only vertical words.) mask : nd-array or None (default=None) If not None, gives a binary mask on where to draw words. If mask is not None, width and height will be ignored and the shape of mask will be used instead. All white (#FF or #FFFFFF) entries will be considerd "masked out" while other entries will be free to draw on. [This changed in the most recent version!] scale : float (default=1) Scaling between computation and drawing. For large word-cloud images, using scale instead of larger canvas size is significantly faster, but might lead to a coarser fit for the words. min_font_size : int (default=4) Smallest font size to use. Will stop when there is no more room in this size. font_step : int (default=1) Step size for the font. font_step > 1 might speed up computation but give a worse fit. max_words : number (default=200) The maximum number of words. stopwords : set of strings or None The words that will be eliminated. If None, the build-in STOPWORDS list will be used. background_color : color value (default="black") Background color for the word cloud image. max_font_size : int or None (default=None) Maximum font size for the largest word. If None, height of the image is used. mode : string (default="RGB") Transparent background will be generated when mode is "RGBA" and background_color is None. relative_scaling : float (default=.5) Importance of relative word frequencies for font-size. With relative_scaling=0, only word-ranks are considered. With relative_scaling=1, a word that is twice as frequent will have twice the size. If you want to consider the word frequencies and not only their rank, relative_scaling around .5 often looks good. .. versionchanged: 2.0 Default is now 0.5. color_func: callable, default=None Callable with parameters word, font_size, position, orientation, font_path, random_state that returns a PIL color for each word. Overwrites "colormap". See colormap for specifying a matplotlib colormap instead. regexp : string or None (optional) Regular expression to split the input text into tokens in process_text. If None is specified, ``r"\w[\w']+"`` is used. collocations : bool, default=True Whether to include collocations (bigrams) of two words. .. versionadded: 2.0 colormap : string or matplotlib colormap, default="viridis" Matplotlib colormap to randomly draw colors from for each word. Ignored if "color_func" is specified. .. versionadded: 2.0 normalize_plurals : bool, default=True Whether to remove trailing 's' from words. If True and a word appears with and without a trailing 's', the one with trailing 's' is removed and its counts are added to the version without trailing 's' -- unless the word ends with 'ss'.
类WordCloud在:WordCloud找到。wordcloudclass WordCloud(对象): 用于生成和绘制的Word云对象。 参数 ----------font_path:字符串 要使用的字体(OTF或TTF)的字体路径。 Linux机器上的默认DroidSansMono路径。如果你在另一个操作系统上或者没有这个字体,你需要调整这个路径。width :int(默认=400) 画布的宽度。height :int(默认=200) 画布的高度。prefer_horizontal : float(默认=0.90) 尝试水平拟合与垂直拟合的时间比。如果prefer_horizontal < 1,算法将尝试旋转不适合的单词。(目前还没有内置的方法来只获取垂直的单词。)mask : nd-array或None(默认=None) 如果没有,给出一个二进制掩码在哪里绘制单词。如果遮罩不是None,宽度和高度将被忽略,而使用遮罩的形状。所有白色(#FF或#FFFFFF)的参赛作品将被视为“屏蔽”,而其他参赛作品将可以自由提取。[这在最近的版本中有所改变!]scale :浮动(默认=1) 在计算和绘图之间缩放。对于大的字云图像, 使用scale而不是更大的画布尺寸会快得多,但可能会导致适合文字的粗化。min_font_size : int(默认=4)使用的最小字体大小。将停止时,没有更多的空间在这个大小。font_step : int(默认=1) 字体的步长。font_step > 1可能会加速计算,但是匹配效果更差。max_words :数字(默认=200)单词的最大数量。stopwords :一组字符串或没有将被删除的单词。如果没有,将使用内置的STOPWORDS列表。background_color :颜色值(默认=“黑色”)背景色为字云图像。max_font_size : int或None(默认=None) 为最大的字的最大字体大小。如果没有,则使用图像的高度。mode :string(默认="RGB") 当模式为“RGBA”,background_color为None时,将生成透明背景。relative_scaling :浮动(默认= 5) 字体大小的相对频率的重要性。对于relative_scaling=0,只考虑单词的等级。使用relative_scaling=1,出现频率两倍的单词的大小也会增加一倍。如果您想要考虑单词的频率而不仅仅是它们的排名,那么在5左右的relative_scaling通常看起来不错。 . .versionchanged: 2.0 现在默认值是0.5。color_func:可调用,默认=无 可调用参数word, font_size, position, orientation, font_path, random_state,为每个单词返回一个PIL颜色。 覆盖“colormap”。请参阅colormap以指定matplotlib的colormap。regexp :字符串或无(可选) 正则表达式,用于在process_text中将输入文本分割为令牌。 如果没有指定,“r”\ w (\ w) +”“使用。 &collocations :bool, default=True是否包含两个单词的搭配(双字母组合)。 . .versionadded: 2.0colormap : string或matplotlib colormap,默认="viridis" Matplotlib colormap为每个单词随机绘制颜色。 如果指定了“color_func”,则忽略。 . .versionadded: 2.0normalize_plurals : bool, default=True 是否删除单词后面的“s”。如果是真的,并且一个单词出现时带有或不带有结尾s,那么带有结尾s的单词将被删除,并将其计数添加到没有结尾s的版本中——除非这个单词以“ss”结尾。 Attributes ---------- ``words_`` : dict of string to float Word tokens with associated frequency. .. versionchanged: 2.0 ``words_`` is now a dictionary ``layout_ `` : list of tuples (string, int, (int, int), int, color)) Encodes the fitted word cloud. Encodes for each word the string, font size, position, orientation and color. Notes ----- Larger canvases with make the code significantly slower. If you need a large word cloud, try a lower canvas size, and set the scale parameter. The algorithm might give more weight to the ranking of the words than their actual frequencies, depending on the ``max_font_size ` and the scaling heuristic. """属性 --------- ' ' words_ ' ':浮动字符串的dict 具有相关频率的单词标记。 . .versionchanged: 2.0 “words_”现在是一本字典 ' ' layout_ ' ':元组列表(字符串,int, (int, int), int, color)) 编码合适的词云。为每个单词编码字符串、字体大小、位置、方向和颜色。 笔记 ----- 较大的画布使代码明显地变慢。如果你需要一个大的字云,尝试一个较低的画布大小,并设置比例参数。 根据' ' max_font_size '和缩放启发式,算法可能给予单词的排名比它们的实际频率更多的权重。 ”“”def __init__(self, font_path=None, width=400, height=200, margin=2, ranks_only=None, prefer_horizontal=.9, mask=None, scale=1, color_func=None, max_words=200, min_font_size=4, stopwords=None, random_state=None, background_color='black', max_font_size=None, font_step=1, mode="RGB", relative_scaling=.5, regexp=None, collocations=True, colormap=None, normalize_plurals=True): if font_path is None: font_path = FONT_PATH if color_func is None and colormap is None: # we need a color map import matplotlib version = matplotlib.__version__ if version[0] < "2" and version[2] < "5": colormap = "hsv" else: colormap = "viridis" self.colormap = colormap self.collocations = collocations self.font_path = font_path self.width = width self.height = height self.margin = margin self.prefer_horizontal = prefer_horizontal self.mask = mask self.scale = scale self.color_func = color_func or colormap_color_func(colormap) self.max_words = max_words self.stopwords = stopwords if stopwords is not None else STOPWORDS self.min_font_size = min_font_size self.font_step = font_step self.regexp = regexp if isinstance(random_state, int): random_state = Random(random_state) self.random_state = random_state self.background_color = background_color self.max_font_size = max_font_size self.mode = mode if relative_scaling < 0 or relative_scaling > 1: raise ValueError( "relative_scaling needs to be " "between 0 and 1, got %f." % relative_scaling) self.relative_scaling = relative_scaling if ranks_only is not None: warnings.warn("ranks_only is deprecated and will be removed as" " it had no effect. Look into relative_scaling.", DeprecationWarning) self.normalize_plurals = normalize_plurals def fit_words(self, frequencies): """Create a word_cloud from words and frequencies.
Alias to generate_from_frequencies.
Parameters ---------- frequencies : dict from string to float A contains words and associated frequency.
Returns ------- self """ return self.generate_from_frequencies(frequencies) def generate_from_frequencies(self, frequencies, max_font_size=None): """Create a word_cloud from words and frequencies. Parameters
---------- frequencies : dict from string to float A contains words and associated frequency.
max_font_size : int Use this font-size instead of self.max_font_size
Returns ------- self
""" # make sure frequencies are sorted and normalized frequencies = sorted(frequencies.items(), key=itemgetter(1), reverse=True) if len(frequencies)
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?