您当前的位置: 首页 > 

暂无认证

  • 3浏览

    0关注

    95907博文

    0收益

  • 0浏览

    0点赞

    0打赏

    0留言

私信
关注
热门博文

使用transformer的YOLOv7及TensorRT部署

发布时间:2022-05-07 07:00:00 ,浏览量:3

点击上方“3D视觉工坊”,选择“星标”

干货第一时间送达

fbcf4b27ff8447587f3aa5024653c265.png

作者丨Rubin

来源丨计算机视觉CV

    最近在github上看到一个博主开源的YOLOv7仓库都惊呆了,YOLOv6都还没出来怎么就到YOLOv7了7c1b0745f5400dca468ed07425e09184.png稍微看了下,原来作者是基于这两年来很火的transformer做的检测和分割模型,测试的效果都非常棒,比YOLOv5效果好很多。由此可见,基于Transformer based的检测模型才是未来。你会发现它学到的东西非常合理,比从一大堆boudingbox里面选择概率的范式要好一点。话不多说,先上代码链接:

https://github.com/jinfagang/yolov7

968aaa878a5a991146590a1198f78444.png

    开源的YOLOv7功能很强大,支持 YOLO, DETR, AnchorDETR等等。作者声称发现很多开源检测框架,比如YOLOv5、EfficientDetection都有自己的弱点。例如,YOLOv5实际上设计过度,太多混乱的代码。更令人惊讶的是,pytorch中至少有20多个不同版本的YOLOv3-YOLOv4的重新实现,其中99.99%是完全错误的,你既不能训练你的数据集,也不能使其与原paper相比。所以有了作者开源的这个仓库!该repo 支持DETR等模型的ONNX导出,并且可以进行tensorrt推理。

     该repo提供了以下的工作:

  •  YOLOv4 contained with CSP-Darknet53;

  •  YOLOv7 arch with resnets backbone;

  •  GridMask augmentation from PP-YOLO included;

  •  Mosiac transform supported with a custom datasetmapper;

  •  YOLOv7 arch Swin-Transformer support (higher accuracy but lower speed);

  •  RandomColorDistortion, RandomExpand, RandomCrop, RandomFlip;

  •  CIoU loss (DIoU, GIoU) and label smoothing (from YOLOv5 & YOLOv4);

  •  YOLOv7 Res2net + FPN supported;

  •  Pyramid Vision Transformer v2 (PVTv2) supported

  •  YOLOX s,m,l backbone and PAFPN added, we have a new combination of YOLOX backbone and pafpn;

  •  YOLOv7 with Res2Net-v1d backbone, we found res2net-v1d have a better accuracy then darknet53;

  •  Added PPYOLOv2 PAN neck with SPP and dropblock;

  •  YOLOX arch added, now you can train YOLOX model (anchor free yolo) as well;

  •  DETR: transformer based detection model and onnx export supported, as well as TensorRT acceleration;

  •  AnchorDETR: Faster converge version of detr, now supported!

    仓库提供了快速检测Quick start和train自己数据集的代码及操作流程,也提供了许多预训练模型可供下载,读者可依据自己的需要选择下载对应的检测模型。

739eb4dd567c342a35e63e987ab990e9.png

快速运行demo代码
python3 demo.py --config-file configs/wearmask/darknet53.yaml --input ./datasets/wearmask/images/val2017 --opts MODEL.WEIGHTS output/model_0009999.pth
实例分割
python demo.py --config-file configs/coco/sparseinst/sparse_inst_r50vd_giam_aug.yaml --video-input ~/Movies/Videos/86277963_nb2-1-80.flv -c 0.4 --opts MODEL.WEIGHTS weights/sparse_inst_r50vd_giam_aug_8bc5b3.pth
基于detectron2新推出的LazyConfig系统,使用LazyConfig模型运行
python3 demo_lazyconfig.py --config-file configs/new_baselines/panoptic_fpn_regnetx_0.4g.py --opts train.init_checkpoint=output/model_0004999.pth
训练数据集
python train_net.py --config-file configs/coco/darknet53.yaml --num-gpus 1

如果你想训练YOLOX,使用 config file configs/coco/yolox_s.yaml

导出 ONNX && TensorRT && TVM detr
python export_onnx.py --config-file detr/config/file
SparseInst
python export_onnx.py --config-file configs/coco/sparseinst/sparse_inst_r50_giam_aug.yaml --video-input ~/Videos/a.flv  --opts MODEL.WEIGHTS weights/sparse_inst_r50_giam_aug_2b7d68.pth INPUT.MIN_SIZE_TEST 512

具体的操作流程可以去原仓库看,都有详细的解析!

检测结果

fc97bd4b932015c0e4b3f92103870bf5.png

7aa2f316dc9917ca0b9be7feb59755f7.png

6f3a6c552facca60828fc254fb5b3539.png

参考链接

[1]https://manaai.cn/aisolution_detail.html?id=7

[2]https://github.com/jinfagang/yolov7

本文仅做学术分享,如有侵权,请联系删文。

3D视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的多传感器数据融合技术

2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码) 3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进 4.国内首个面向工业级实战的点云处理课程 5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解 6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦 7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化 8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

9.从零搭建一套结构光3D重建系统[理论+源码+实践]

10.单目深度估计方法:算法梳理与代码实现

11.自动驾驶中的深度学习模型部署实战

12.相机模型与标定(单目+双目+鱼眼)

13.重磅!四旋翼飞行器:算法与实战

14.ROS2从入门到精通:理论与实战

15.国内首个3D缺陷检测教程:理论、源码与实战

重磅!3DCVer-学术论文写作投稿 交流群已成立

扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。

同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。

一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

a3844d09d4c433c805a72bc071ae5a89.png

▲长按加微信群或投稿

6863d052c095c7e9905607aaafd60647.png

▲长按关注公众号

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看介绍,3天内无条件退款

f8978d5b51b6bd8b82e3abc03f28ab67.png

 圈里有高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

关注
打赏
1655516835
查看更多评论
立即登录/注册

微信扫码登录

0.0646s