作者丨冯万泉@知乎(已授权)
来源丨https://www.zhihu.com/question/519162597/answer/2393206762
编辑丨极市平台
导读
本文介绍来自中国科学技术大学等的一篇CVPR 2022的工作:Neural Points,提出了一种点云的连续隐式表示,在点云连续上采样任务上取得了惊艳的效果。
分享一下我们组CVPR 2022的新工作,Neural Points,提出了一种点云的连续隐式表示,在点云连续上采样任务上取得了惊艳的效果。
-
论文链接:https://arxiv.org/abs/2112.04148
-
github代码:https://github.com/WanquanF/NeuralPoints

在传统的点云表示中,每个点只表示3D空间中的一个离散位置,故其表达能力受分辨率的限制。为了克服该问题,之前已经有一些点云上采样方法,可以看作是能够将离散点云的分辨率进行一定的提升,但该类方法的问题在于,他们是“离散到离散”的格式,其结果依然是离散的点云,并没有从本质上克服分辨率的限制。为此,我们提出一种点云连续隐式表示,可以实现预测点云的潜在曲面,和任意分辨率的上采样。我们在点云的局部构建了神经隐式场,并且通过聚合的方式使得点云的整体成为一个全局连续隐式表示。
【算法管线】下图展示我们的算法管线:(1) 给定输入点云,我们首先为每个局部小块构建局部神经隐式场;(2) 将局部神经场聚合在一起形成全局形状;(3) 通过构建的连续神经表示,我们可以重采样任意数量的点。

将输入点云表示为 。我们以 为中心点将曲面划分为重叠的局部块 。在每个点 局部小块 同构于 2D 参数域 (我们使用 ) ,这意味着我们可以在它们之间构造一个双射映射:
其中 。

给定任意二维采样点 , 我们可以计算 作为其对应的 3D 采 样点。类似地, 对于任何3D点 , 我们可以计算其对应的 2D 坐标 。此外, 我们可以计算点 处的法向 , 然后将其标准化为单位长度。
(2)神经场聚合我们需要将不同的曲面块聚合在一起以获得全局连续隐式,其公式大概形如:
其中 为任意三维点, 的计算依赖于 到各个小块的距离。法向可以类似计算。这样就获得了全局连续隐式。
(3)点云采样之后就是具体的点云采样环节。我们在 参数域 中均匀地采样点, 并将2D采样点映射到3D局 部块上。具体来说, 对于在每个中心点 的附近采样 , 然后将它们映射到 3D为 。之后, 我们从所有小块采样点的并集中进行均匀采样以获得所需的结果。
【网络&Loss】我们在每个中心点的附近邻居点云上提取深度特征,使其代表局部的几何形状;局部的神经场则用MLP来实现,其输入包括二维查询点和局部形状特征两方面。
至于Loss,我们设计了形状约束,法向约束,还有使得聚合效果得到保证的聚合项。
【效果分析】为了清楚地显示每个点的神经场,我们用下图来可视化从神经场生成的一些局部小块。第一行展示了我们提取局部特征的局部点云,第二行展示了它们对应的局部神经场小块。红色是中心点。在第一行中,为了清楚地显示局部潜在形状,我们显示了我们从中提取局部点的潜在曲面。在第二行中,我们放大局部部分并显示生成的神经场小块。我们可以看到生成的小块可以平滑地覆盖局部区域,并且与局部点云的形状非常吻合。每列显示从我们测试集中的模型中提取的不同局部部分。对于不同的局部形状,神经场可以获得满意的局部块,这对Neural Points表示的整体表达能力有很大贡献。

展示一些在Sketchfab数据集上的对比结果:

未经训练直接泛化到PU-GAN数据集的结果:

在非常大的采样因子下的结果:

在真实数据上的结果:

我们提出了Neural Points,其中每个点通过神经场表示局部连续几何形状,以表达更复杂的细节。由于其局部表示方式,所训练的模型具有很好的泛化能力。我们印证了这种表示在点云上采样任务上的出色性能。虽然当前我们只应用在了点云上采样任务上,当该策略具有普适性,可推广至相关问题上。最后,感谢大家的阅读,欢迎关注、讨论!
本文仅做学术分享,如有侵权,请联系删文。
干货下载与学习
后台回复:巴塞罗那自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件
后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf
后台回复:3D视觉课程,即可学习3D视觉领域精品课程
3D视觉工坊精品课程官网:3dcver.com
1.面向自动驾驶领域的多传感器数据融合技术
2.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码) 3.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进 4.国内首个面向工业级实战的点云处理课程 5.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解 6.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦 7.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化 8.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)
9.从零搭建一套结构光3D重建系统[理论+源码+实践]
10.单目深度估计方法:算法梳理与代码实现
11.自动驾驶中的深度学习模型部署实战
12.相机模型与标定(单目+双目+鱼眼)
13.重磅!四旋翼飞行器:算法与实战
14.ROS2从入门到精通:理论与实战
15.国内首个3D缺陷检测教程:理论、源码与实战
16.基于Open3D的点云处理入门与实战教程
重磅!3DCVer-学术论文写作投稿 交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。
同时也可申请加入我们的细分方向交流群,目前主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、学术交流、求职交流、ORB-SLAM系列源码交流、深度估计等微信群。
一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。
▲长按加微信群或投稿
▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的视频课程(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答五个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近4000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款
圈里有高质量教程资料、答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~