using System; using System.Collections; namespace Sort { public class HeapSorter { public static int[] Sort(int[] sortArray) { BuildMaxHeap(sortArray); for (int i = (sortArray.Length - 1); i > 0; i--) { Swap(ref sortArray[0], ref sortArray[i]); // 将堆顶元素和无序区的最后一个元素交换 MaxHeapify(sortArray, 0, i); // 将新的无序区调整为堆,无序区在变小 } return sortArray; } /// /// 初始大根堆,自底向上地建堆 /// 完全二叉树的基本性质,最底层节点是 n/2,所以从 sortArray.Length / 2 开始 /// private static void BuildMaxHeap(int[] sortArray) { for (int i = (sortArray.Length / 2) - 1; i >= 0; i--) { MaxHeapify(sortArray,i, sortArray.Length); } } /// /// 将指定的节点调整为堆 /// /// 需要调整的节点 /// 堆的大小,也指数组中无序区的长度 private static void MaxHeapify(int[] sortArray, int i, int heapSize) { int left = 2 * i + 1; // 左子节点 int right = 2 * i + 2; // 右子节点 int larger = i; // 临时变量,存放大的节点值 // 比较左子节点 if (left < heapSize && sortArray[left] > sortArray[larger]) { larger = left; } // 比较右子节点 if (right < heapSize && sortArray[right] > sortArray[larger]) { larger = right; } // 如有子节点大于自身就交换,使大的元素上移。 if (i != larger) { Swap(ref sortArray[i], ref sortArray[larger]); MaxHeapify(sortArray, larger, heapSize); } } //数组内元素互换 private static void Swap(ref int a, ref int b) { int t; t = a; a = b; b = t; } } }
堆排序的思想:
利用大顶堆(小顶堆)堆顶记录的是最大关键字(最小关键字)这一特性,使得每次从无序中选择最大记录(最小记录)变得简单。
其基本思想为(大顶堆):
1)将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区;
2)将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]
关注
打赏
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?
立即登录/注册


微信扫码登录