第34课: Stage划分和Task最佳位置算法源码彻底解密
Spark作业调度的时候,Job提交过程中Stage 划分的算法以及Task最佳位置的算法。Stage的划分是DAGScheduler工作的核心,涉及作业在集群中怎么运行,Task最佳位置数据本地性的内容。Spark 算子的构建是链式的,涉及到怎么进行计算,首先是划分Stage,Stage划分以后才是计算的本身;分布式大数据系统追求最大化的数据本地性,数据本地性是指数据进行计算的时候,数据就在内存中,甚至不用计算就直接获得结果。
Spark Application中可以因为不同的Action触发众多的Job,也就是说一个Application中可以有很多的Job,每个Job是由一个或者多个Stage构成的,后面的Stage依赖于前面的Stage,也就是说只有前面依赖的Stage计算完毕后,后面的Stage才会运行;
Stage划分就是根据宽依赖,什么时候产生宽依赖呢?例如reducByKey、groupByKey等等;
我们从RDD的collect()方法开始,collect算子是一个Action,会触发job的运行:
RDD.scala的collect方法源码,调用了runJob方法:
1. def collect(): Array[T] = withScope {
2. val results = sc.runJob(this, (iter:Iterator[T]) => iter.toArray)
3. Array.concat(results: _*)
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?