- 一、序列傅里叶变换与反变换
- 二、序列绝对可和 与 存在傅里叶变换之间的关系
- 三、序列傅里叶变换性质
在上一篇博客 【数字信号处理】序列傅里叶变换 ( 序列傅里叶变换定义详细分析 | 证明单位复指数序列正交完备性 | 序列存在傅里叶变换的性质 | 序列绝对可和 → 序列傅里叶变换一定存在 ) 的介绍了如下内容 :
傅里叶变换 : 时域 " 离散非周期 " 信号 , 其频域就是 " 连续周期 " 的 , 其频域 可以 展开成一个 " 正交函数的无穷级数加权和 " , 如下公式
X ( e j ω ) = ∑ n = − ∞ + ∞ x ( n ) e − j ω n X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n} X(ejω)=n=−∞∑+∞x(n)e−jωn
傅里叶反变换 : 利用 " 正交函数 " 可以推导出 " 傅里叶反变换 " , 即 根据 傅里叶变换 推导 序列 ;
x ( n ) = 1 2 π ∫ − π π X ( e j ω ) e j ω k d ω x(n) = \cfrac{1}{2\pi} \int_{-\pi} ^\pi X( e^{j \omega } )e^{j \omega k} d \omega x(n)=2π1∫−ππX(ejω)ejωkdω
二、序列绝对可和 与 存在傅里叶变换之间的关系序列绝对可和 与 存在傅里叶变换 :
- 如果 " x ( n ) x(n) x(n)序列绝对可和 " , 则 " 序列傅里叶变换 SFT " 一定存在 ;
- 如果 " 序列傅里叶变换 SFT " 存在 , 不一定 " x ( n ) x(n) x(n)序列绝对可和 " ; 某些 " 非绝对可和序列 " , 引入 广义函数 δ ( ω ) \delta(\omega) δ(ω) 后 , 其 傅里叶变换也存在 ;
序列绝对可和可以表示成 :
∑ n = − ∞ + ∞ ∣ x ( n ) ∣ < ∞ \sum_{n=-\infty}^{+\infty}|x(n)| < \infty n=−∞∑+∞∣x(n)∣
最近更新
- 深拷贝和浅拷贝的区别(重点)
- 【Vue】走进Vue框架世界
- 【云服务器】项目部署—搭建网站—vue电商后台管理系统
- 【React介绍】 一文带你深入React
- 【React】React组件实例的三大属性之state,props,refs(你学废了吗)
- 【脚手架VueCLI】从零开始,创建一个VUE项目
- 【React】深入理解React组件生命周期----图文详解(含代码)
- 【React】DOM的Diffing算法是什么?以及DOM中key的作用----经典面试题
- 【React】1_使用React脚手架创建项目步骤--------详解(含项目结构说明)
- 【React】2_如何使用react脚手架写一个简单的页面?