- 一、前置概念
- 1、序列对称分解定理
- 2、傅里叶变换
- 3、傅里叶变换的共轭对称分解
- 二、序列傅里叶变换共轭对称性质
- 0、序列傅里叶变换共轭对称性质
- x(n) 分解为实部序列与虚部序列
- x(n) 分解为共轭对称序列与共轭反对称序列 ( 序列对称分解 )
- X(e^{jω}) 分解为实部序列与虚部序列
- X(e^{jω}) 分解为共轭对称与反对称序列的傅里叶变换 ( 频域共轭对称分解 )
- 1、序列实部傅里叶变换
- 2、序列虚部傅里叶变换
- 3、共轭对称序列傅里叶变换
- 4、共轭反对称序列傅里叶变换
序列对称分解定理 : 任意一个 序列 x ( n ) x(n) x(n) , 都可以使用其 共轭对称序列 x e ( n ) x_e(n) xe(n) 与 共轭反对称序列 x o ( n ) x_o(n) xo(n) 之和来表示 ;
x ( n ) = x e ( n ) + x o ( n ) x(n) = x_e(n) + x_o(n) x(n)=xe(n)+xo(n)
共轭对称序列 x e ( n ) x_e(n) xe(n) 与 原序列 x ( n ) x(n) x(n) 之间的关系如下 :
x e ( n ) = 0.5 [ x ( n ) + x ∗ ( − n ) ] x_e(n) = 0.5[x(n) + x^*(-n)] xe(n)=0.5[x(n)+x∗(−n)]
共轭反对称序列 x o ( n ) x_o(n) xo(n) 与 原序列 x ( n ) x(n) x(n) 之间的关系如下 :
x o ( n ) = 0.5 [ x ( n ) − x ∗ ( − n ) ] x_o(n) = 0.5[x(n) - x^*(-n)] xo(n)=0.5[x(n)−x∗(−n)]
2、傅里叶变换x ( n ) x(n) x(n) 的 傅里叶变换 是 X ( e j ω ) X(e^{j \omega}) X(ejω) ,
x ( n ) x(n) x(n) 存在 共轭对称 x e ( n ) x_e(n) xe(n) 与 共轭反对称 x o ( n ) x_o(n) xo(n) ,
X ( e j ω ) X(e^{j \omega}) X(ejω) 也存在着 共轭对称 X e ( e j ω ) X_e(e^{j\omega}) Xe(ejω) 和 共轭反对称 X o ( e j ω ) X_o(e^{j\omega}) Xo(ejω) ;
3、傅里叶变换的共轭对称分解傅里叶变换的共轭对称分解 :
X ( e j ω ) = X e ( e j ω ) + X o ( e j ω ) X(e^{j\omega}) = X_e(e^{j\omega}) + X_o(e^{j\omega}) X(ejω)=Xe(ejω)+Xo(ejω)
其中 X ( e j ω ) X(e^{j\omega}) X(ejω) 是 x ( n ) x(n) x(n) 的傅里叶变换 , X e ( e j ω ) X_e(e^{j\omega}) Xe(ejω) 是傅里叶变换的 共轭对称分量 , X o ( e j ω ) X_o(e^{j\omega}) Xo(ejω) 是傅里叶变换的 共轭反对称分量 ,
二、序列傅里叶变换共轭对称性质 0、序列傅里叶变换共轭对称性质 x(n) 分解为实部序列与虚部序列x ( n ) x(n) x(n) 可以分解为 实部序列 x R ( n ) x_R(n) xR(n) 和 虚部序列 j x I ( n ) j x_I(n) jxI(n) :
x ( n ) = x R ( n ) + j x I ( n ) x(n) = x_R(n) + j x_I(n) x(n)=xR(n)+jxI(n)
x(n) 分解为共轭对称序列与共轭反对称序列 ( 序列对称分解 )根据序列对称分解定理 , x ( n ) x(n) x(n) 还可以由序列的 共轭对称序列 x e ( n ) x_e(n) xe(n) 和 共轭反对称序列 x o ( n ) x_o(n) xo(n) 之和表示 ;
x ( n ) = x e ( n ) + x o ( n ) x(n) = x_e(n) + x_o(n) x(n)=xe(n)+xo(n)
X(e^{jω}) 分解为实部序列与虚部序列x ( n ) x(n) x(n) 的傅里叶变换 X ( e j ω ) X(e^{j\omega}) X(ejω) 也可以分解为 实部序列 X R ( e j ω ) X_R(e^{j\omega}) XR(ejω) 和 虚部序列 j X I ( e j ω ) j X_I(e^{j\omega}) jXI(ejω) :
X ( e j ω ) = X R ( e j ω ) + j X I ( e j ω ) X(e^{j\omega}) =X_R(e^{j\omega})+ j X_I(e^{j\omega}) X(ejω)=XR(ejω)+jXI(ejω)
X(e^{jω}) 分解为共轭对称与反对称序列的傅里叶变换 ( 频域共轭对称分解 )根据 傅里叶变换的共轭对称分解 , x ( n ) x(n) x(n) 的傅里叶变换 , 可以由 x ( n ) x(n) x(n) 的 共轭对称序列 的傅里叶变换 X e ( e j ω ) X_e(e^{j\omega}) Xe(ejω) 与 x ( n ) x(n) x(n) 的 共轭反对称序列 的傅里叶变换 X o ( e j ω ) X_o(e^{j\omega}) Xo(ejω) 之和表示 ;
X ( e j ω ) = X e ( e j ω ) + X o ( e j ω ) X(e^{j\omega}) = X_e(e^{j\omega}) + X_o(e^{j\omega}) X(ejω)=Xe(ejω)+Xo(ejω)
1、序列实部傅里叶变换x ( n ) x(n) x(n) 序列的 实部 x R ( n ) x_R(n) xR(n) 的 傅里叶变换 , 就是 x ( n ) x(n) x(n) 的 傅里叶变换 X ( e j ω ) X(e^{j \omega}) X(ejω) 的 共轭对称序列 X e ( e j ω ) X_e(e^{j \omega}) Xe(ejω);
x R ( n ) x_R(n) xR(n) 的 傅里叶变换 X e ( e j ω ) X_e(e^{j \omega}) Xe(ejω) 具备 共轭对称性 ;
x R ( n ) ⟷ S F T X e ( e j ω ) x_R(n) \overset{SFT} \longleftrightarrow X_e(e^{j \omega}) xR(n)⟷SFTXe(ejω)
2、序列虚部傅里叶变换x ( n ) x(n) x(n) 序列的 虚部 x I ( n ) x_I(n) xI(n) 的 傅里叶变换 , 就是 x ( n ) x(n) x(n) 的 傅里叶变换 X ( e j ω ) X(e^{j \omega}) X(ejω) 的 共轭反对称序列 X o ( e j ω ) X_o(e^{j \omega}) Xo(ejω);
j x I ( n ) jx_I(n) jxI(n) 的 傅里叶变换 X o ( e j ω ) X_o(e^{j \omega}) Xo(ejω) 具备 共轭反对称性 :
j x I ( n ) ⟷ S F T X o ( e j ω ) jx_I(n) \overset{SFT} \longleftrightarrow X_o(e^{j \omega}) jxI(n)⟷SFTXo(ejω)
3、共轭对称序列傅里叶变换x ( n ) x(n) x(n) 的 共轭对称序列 x e ( n ) x_e(n) xe(n) 的 傅里叶变换 , 一定是一个 实序列 X R ( e j ω ) X_R(e^{j \omega}) XR(ejω)
x e ( n ) ⟷ S F T X R ( e j ω ) x_e(n) \overset{SFT} \longleftrightarrow X_R(e^{j \omega}) xe(n)⟷SFTXR(ejω)
4、共轭反对称序列傅里叶变换x ( n ) x(n) x(n) 的 共轭反对称序列 x o ( n ) x_o(n) xo(n) 的 傅里叶变换 , 一定是一个 纯虚序列 X R ( e j ω ) X_R(e^{j \omega}) XR(ejω)
x o ( n ) ⟷ S F T j X I ( e j ω ) x_o(n) \overset{SFT} \longleftrightarrow jX_I(e^{j \omega}) xo(n)⟷SFTjXI(ejω)